Luigi Santivetti | 69972f9 | 2019-11-12 22:55:40 +0000 | [diff] [blame] | 1 | /* |
| 2 | limits.c - code pertaining to limit-switches and performing the homing cycle |
| 3 | Part of Grbl |
| 4 | |
| 5 | Copyright (c) 2012-2016 Sungeun K. Jeon for Gnea Research LLC |
| 6 | Copyright (c) 2009-2011 Simen Svale Skogsrud |
| 7 | |
| 8 | Grbl is free software: you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Public License as published by |
| 10 | the Free Software Foundation, either version 3 of the License, or |
| 11 | (at your option) any later version. |
| 12 | |
| 13 | Grbl is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with Grbl. If not, see <http://www.gnu.org/licenses/>. |
| 20 | */ |
| 21 | |
| 22 | #include "grbl.h" |
| 23 | |
| 24 | |
| 25 | // Homing axis search distance multiplier. Computed by this value times the cycle travel. |
| 26 | #ifndef HOMING_AXIS_SEARCH_SCALAR |
| 27 | #define HOMING_AXIS_SEARCH_SCALAR 1.5 // Must be > 1 to ensure limit switch will be engaged. |
| 28 | #endif |
| 29 | #ifndef HOMING_AXIS_LOCATE_SCALAR |
| 30 | #define HOMING_AXIS_LOCATE_SCALAR 5.0 // Must be > 1 to ensure limit switch is cleared. |
| 31 | #endif |
| 32 | |
| 33 | #ifdef ENABLE_DUAL_AXIS |
| 34 | // Flags for dual axis async limit trigger check. |
| 35 | #define DUAL_AXIS_CHECK_DISABLE 0 // Must be zero |
| 36 | #define DUAL_AXIS_CHECK_ENABLE bit(0) |
| 37 | #define DUAL_AXIS_CHECK_TRIGGER_1 bit(1) |
| 38 | #define DUAL_AXIS_CHECK_TRIGGER_2 bit(2) |
| 39 | #endif |
| 40 | |
| 41 | void limits_init() |
| 42 | { |
| 43 | LIMIT_DDR &= ~(LIMIT_MASK); // Set as input pins |
| 44 | |
| 45 | #ifdef DISABLE_LIMIT_PIN_PULL_UP |
| 46 | LIMIT_PORT &= ~(LIMIT_MASK); // Normal low operation. Requires external pull-down. |
| 47 | #else |
| 48 | LIMIT_PORT |= (LIMIT_MASK); // Enable internal pull-up resistors. Normal high operation. |
| 49 | #endif |
| 50 | |
| 51 | if (bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE)) { |
| 52 | LIMIT_PCMSK |= LIMIT_MASK; // Enable specific pins of the Pin Change Interrupt |
| 53 | PCICR |= (1 << LIMIT_INT); // Enable Pin Change Interrupt |
| 54 | } else { |
| 55 | limits_disable(); |
| 56 | } |
| 57 | |
| 58 | #ifdef ENABLE_SOFTWARE_DEBOUNCE |
| 59 | MCUSR &= ~(1<<WDRF); |
| 60 | WDTCSR |= (1<<WDCE) | (1<<WDE); |
| 61 | WDTCSR = (1<<WDP0); // Set time-out at ~32msec. |
| 62 | #endif |
| 63 | } |
| 64 | |
| 65 | |
| 66 | // Disables hard limits. |
| 67 | void limits_disable() |
| 68 | { |
| 69 | LIMIT_PCMSK &= ~LIMIT_MASK; // Disable specific pins of the Pin Change Interrupt |
| 70 | PCICR &= ~(1 << LIMIT_INT); // Disable Pin Change Interrupt |
| 71 | } |
| 72 | |
| 73 | |
| 74 | // Returns limit state as a bit-wise uint8 variable. Each bit indicates an axis limit, where |
| 75 | // triggered is 1 and not triggered is 0. Invert mask is applied. Axes are defined by their |
| 76 | // number in bit position, i.e. Z_AXIS is (1<<2) or bit 2, and Y_AXIS is (1<<1) or bit 1. |
| 77 | uint8_t limits_get_state() |
| 78 | { |
| 79 | uint8_t limit_state = 0; |
| 80 | uint8_t pin = (LIMIT_PIN & LIMIT_MASK); |
| 81 | #ifdef INVERT_LIMIT_PIN_MASK |
| 82 | pin ^= INVERT_LIMIT_PIN_MASK; |
| 83 | #endif |
| 84 | if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { pin ^= LIMIT_MASK; } |
| 85 | if (pin) { |
| 86 | uint8_t idx; |
| 87 | for (idx=0; idx<N_AXIS; idx++) { |
| 88 | if (pin & get_limit_pin_mask(idx)) { limit_state |= (1 << idx); } |
| 89 | } |
| 90 | #ifdef ENABLE_DUAL_AXIS |
| 91 | if (pin & (1<<DUAL_LIMIT_BIT)) { limit_state |= (1 << N_AXIS); } |
| 92 | #endif |
| 93 | } |
| 94 | return(limit_state); |
| 95 | } |
| 96 | |
| 97 | |
| 98 | // This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing |
| 99 | // limit switch can cause a lot of problems, like false readings and multiple interrupt calls. |
| 100 | // If a switch is triggered at all, something bad has happened and treat it as such, regardless |
| 101 | // if a limit switch is being disengaged. It's impossible to reliably tell the state of a |
| 102 | // bouncing pin because the Arduino microcontroller does not retain any state information when |
| 103 | // detecting a pin change. If we poll the pins in the ISR, you can miss the correct reading if the |
| 104 | // switch is bouncing. |
| 105 | // NOTE: Do not attach an e-stop to the limit pins, because this interrupt is disabled during |
| 106 | // homing cycles and will not respond correctly. Upon user request or need, there may be a |
| 107 | // special pinout for an e-stop, but it is generally recommended to just directly connect |
| 108 | // your e-stop switch to the Arduino reset pin, since it is the most correct way to do this. |
| 109 | #ifndef ENABLE_SOFTWARE_DEBOUNCE |
| 110 | ISR(LIMIT_INT_vect) // DEFAULT: Limit pin change interrupt process. |
| 111 | { |
| 112 | // Ignore limit switches if already in an alarm state or in-process of executing an alarm. |
| 113 | // When in the alarm state, Grbl should have been reset or will force a reset, so any pending |
| 114 | // moves in the planner and serial buffers are all cleared and newly sent blocks will be |
| 115 | // locked out until a homing cycle or a kill lock command. Allows the user to disable the hard |
| 116 | // limit setting if their limits are constantly triggering after a reset and move their axes. |
| 117 | if (sys.state != STATE_ALARM) { |
| 118 | if (!(sys_rt_exec_alarm)) { |
| 119 | #ifdef HARD_LIMIT_FORCE_STATE_CHECK |
| 120 | // Check limit pin state. |
| 121 | if (limits_get_state()) { |
| 122 | mc_reset(); // Initiate system kill. |
| 123 | system_set_exec_alarm(EXEC_ALARM_HARD_LIMIT); // Indicate hard limit critical event |
| 124 | } |
| 125 | #else |
| 126 | mc_reset(); // Initiate system kill. |
| 127 | system_set_exec_alarm(EXEC_ALARM_HARD_LIMIT); // Indicate hard limit critical event |
| 128 | #endif |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | #else // OPTIONAL: Software debounce limit pin routine. |
| 133 | // Upon limit pin change, enable watchdog timer to create a short delay. |
| 134 | ISR(LIMIT_INT_vect) { if (!(WDTCSR & (1<<WDIE))) { WDTCSR |= (1<<WDIE); } } |
| 135 | ISR(WDT_vect) // Watchdog timer ISR |
| 136 | { |
| 137 | WDTCSR &= ~(1<<WDIE); // Disable watchdog timer. |
| 138 | if (sys.state != STATE_ALARM) { // Ignore if already in alarm state. |
| 139 | if (!(sys_rt_exec_alarm)) { |
| 140 | // Check limit pin state. |
| 141 | if (limits_get_state()) { |
| 142 | mc_reset(); // Initiate system kill. |
| 143 | system_set_exec_alarm(EXEC_ALARM_HARD_LIMIT); // Indicate hard limit critical event |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | } |
| 148 | #endif |
| 149 | |
| 150 | // Homes the specified cycle axes, sets the machine position, and performs a pull-off motion after |
| 151 | // completing. Homing is a special motion case, which involves rapid uncontrolled stops to locate |
| 152 | // the trigger point of the limit switches. The rapid stops are handled by a system level axis lock |
| 153 | // mask, which prevents the stepper algorithm from executing step pulses. Homing motions typically |
| 154 | // circumvent the processes for executing motions in normal operation. |
| 155 | // NOTE: Only the abort realtime command can interrupt this process. |
| 156 | // TODO: Move limit pin-specific calls to a general function for portability. |
| 157 | void limits_go_home(uint8_t cycle_mask) |
| 158 | { |
| 159 | if (sys.abort) { return; } // Block if system reset has been issued. |
| 160 | |
| 161 | // Initialize plan data struct for homing motion. Spindle and coolant are disabled. |
| 162 | plan_line_data_t plan_data; |
| 163 | plan_line_data_t *pl_data = &plan_data; |
| 164 | memset(pl_data,0,sizeof(plan_line_data_t)); |
| 165 | pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE); |
| 166 | #ifdef USE_LINE_NUMBERS |
| 167 | pl_data->line_number = HOMING_CYCLE_LINE_NUMBER; |
| 168 | #endif |
| 169 | |
| 170 | // Initialize variables used for homing computations. |
| 171 | uint8_t n_cycle = (2*N_HOMING_LOCATE_CYCLE+1); |
| 172 | uint8_t step_pin[N_AXIS]; |
| 173 | #ifdef ENABLE_DUAL_AXIS |
| 174 | uint8_t step_pin_dual; |
| 175 | uint8_t dual_axis_async_check; |
| 176 | int32_t dual_trigger_position; |
| 177 | #if (DUAL_AXIS_SELECT == X_AXIS) |
| 178 | float fail_distance = (-DUAL_AXIS_HOMING_FAIL_AXIS_LENGTH_PERCENT/100.0)*settings.max_travel[Y_AXIS]; |
| 179 | #else |
| 180 | float fail_distance = (-DUAL_AXIS_HOMING_FAIL_AXIS_LENGTH_PERCENT/100.0)*settings.max_travel[X_AXIS]; |
| 181 | #endif |
| 182 | fail_distance = min(fail_distance, DUAL_AXIS_HOMING_FAIL_DISTANCE_MAX); |
| 183 | fail_distance = max(fail_distance, DUAL_AXIS_HOMING_FAIL_DISTANCE_MIN); |
| 184 | int32_t dual_fail_distance = trunc(fail_distance*settings.steps_per_mm[DUAL_AXIS_SELECT]); |
| 185 | // int32_t dual_fail_distance = trunc((DUAL_AXIS_HOMING_TRIGGER_FAIL_DISTANCE)*settings.steps_per_mm[DUAL_AXIS_SELECT]); |
| 186 | #endif |
| 187 | float target[N_AXIS]; |
| 188 | float max_travel = 0.0; |
| 189 | uint8_t idx; |
| 190 | for (idx=0; idx<N_AXIS; idx++) { |
| 191 | // Initialize step pin masks |
| 192 | step_pin[idx] = get_step_pin_mask(idx); |
| 193 | #ifdef COREXY |
| 194 | if ((idx==A_MOTOR)||(idx==B_MOTOR)) { step_pin[idx] = (get_step_pin_mask(X_AXIS)|get_step_pin_mask(Y_AXIS)); } |
| 195 | #endif |
| 196 | |
| 197 | if (bit_istrue(cycle_mask,bit(idx))) { |
| 198 | // Set target based on max_travel setting. Ensure homing switches engaged with search scalar. |
| 199 | // NOTE: settings.max_travel[] is stored as a negative value. |
| 200 | max_travel = max(max_travel,(-HOMING_AXIS_SEARCH_SCALAR)*settings.max_travel[idx]); |
| 201 | } |
| 202 | } |
| 203 | #ifdef ENABLE_DUAL_AXIS |
| 204 | step_pin_dual = (1<<DUAL_STEP_BIT); |
| 205 | #endif |
| 206 | |
| 207 | // Set search mode with approach at seek rate to quickly engage the specified cycle_mask limit switches. |
| 208 | bool approach = true; |
| 209 | float homing_rate = settings.homing_seek_rate; |
| 210 | |
| 211 | uint8_t limit_state, axislock, n_active_axis; |
| 212 | do { |
| 213 | |
| 214 | system_convert_array_steps_to_mpos(target,sys_position); |
| 215 | |
| 216 | // Initialize and declare variables needed for homing routine. |
| 217 | axislock = 0; |
| 218 | #ifdef ENABLE_DUAL_AXIS |
| 219 | sys.homing_axis_lock_dual = 0; |
| 220 | dual_trigger_position = 0; |
| 221 | dual_axis_async_check = DUAL_AXIS_CHECK_DISABLE; |
| 222 | #endif |
| 223 | n_active_axis = 0; |
| 224 | for (idx=0; idx<N_AXIS; idx++) { |
| 225 | // Set target location for active axes and setup computation for homing rate. |
| 226 | if (bit_istrue(cycle_mask,bit(idx))) { |
| 227 | n_active_axis++; |
| 228 | #ifdef COREXY |
| 229 | if (idx == X_AXIS) { |
| 230 | int32_t axis_position = system_convert_corexy_to_y_axis_steps(sys_position); |
| 231 | sys_position[A_MOTOR] = axis_position; |
| 232 | sys_position[B_MOTOR] = -axis_position; |
| 233 | } else if (idx == Y_AXIS) { |
| 234 | int32_t axis_position = system_convert_corexy_to_x_axis_steps(sys_position); |
| 235 | sys_position[A_MOTOR] = sys_position[B_MOTOR] = axis_position; |
| 236 | } else { |
| 237 | sys_position[Z_AXIS] = 0; |
| 238 | } |
| 239 | #else |
| 240 | sys_position[idx] = 0; |
| 241 | #endif |
| 242 | // Set target direction based on cycle mask and homing cycle approach state. |
| 243 | // NOTE: This happens to compile smaller than any other implementation tried. |
| 244 | if (bit_istrue(settings.homing_dir_mask,bit(idx))) { |
| 245 | if (approach) { target[idx] = -max_travel; } |
| 246 | else { target[idx] = max_travel; } |
| 247 | } else { |
| 248 | if (approach) { target[idx] = max_travel; } |
| 249 | else { target[idx] = -max_travel; } |
| 250 | } |
| 251 | // Apply axislock to the step port pins active in this cycle. |
| 252 | axislock |= step_pin[idx]; |
| 253 | #ifdef ENABLE_DUAL_AXIS |
| 254 | if (idx == DUAL_AXIS_SELECT) { sys.homing_axis_lock_dual = step_pin_dual; } |
| 255 | #endif |
| 256 | } |
| 257 | |
| 258 | } |
| 259 | homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate. |
| 260 | sys.homing_axis_lock = axislock; |
| 261 | |
| 262 | // Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle. |
| 263 | pl_data->feed_rate = homing_rate; // Set current homing rate. |
| 264 | plan_buffer_line(target, pl_data); // Bypass mc_line(). Directly plan homing motion. |
| 265 | |
| 266 | sys.step_control = STEP_CONTROL_EXECUTE_SYS_MOTION; // Set to execute homing motion and clear existing flags. |
| 267 | st_prep_buffer(); // Prep and fill segment buffer from newly planned block. |
| 268 | st_wake_up(); // Initiate motion |
| 269 | do { |
| 270 | if (approach) { |
| 271 | // Check limit state. Lock out cycle axes when they change. |
| 272 | limit_state = limits_get_state(); |
| 273 | for (idx=0; idx<N_AXIS; idx++) { |
| 274 | if (axislock & step_pin[idx]) { |
| 275 | if (limit_state & (1 << idx)) { |
| 276 | #ifdef COREXY |
| 277 | if (idx==Z_AXIS) { axislock &= ~(step_pin[Z_AXIS]); } |
| 278 | else { axislock &= ~(step_pin[A_MOTOR]|step_pin[B_MOTOR]); } |
| 279 | #else |
| 280 | axislock &= ~(step_pin[idx]); |
| 281 | #ifdef ENABLE_DUAL_AXIS |
| 282 | if (idx == DUAL_AXIS_SELECT) { dual_axis_async_check |= DUAL_AXIS_CHECK_TRIGGER_1; } |
| 283 | #endif |
| 284 | #endif |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | sys.homing_axis_lock = axislock; |
| 289 | #ifdef ENABLE_DUAL_AXIS |
| 290 | if (sys.homing_axis_lock_dual) { // NOTE: Only true when homing dual axis. |
| 291 | if (limit_state & (1 << N_AXIS)) { |
| 292 | sys.homing_axis_lock_dual = 0; |
| 293 | dual_axis_async_check |= DUAL_AXIS_CHECK_TRIGGER_2; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | // When first dual axis limit triggers, record position and begin checking distance until other limit triggers. Bail upon failure. |
| 298 | if (dual_axis_async_check) { |
| 299 | if (dual_axis_async_check & DUAL_AXIS_CHECK_ENABLE) { |
| 300 | if (( dual_axis_async_check & (DUAL_AXIS_CHECK_TRIGGER_1 | DUAL_AXIS_CHECK_TRIGGER_2)) == (DUAL_AXIS_CHECK_TRIGGER_1 | DUAL_AXIS_CHECK_TRIGGER_2)) { |
| 301 | dual_axis_async_check = DUAL_AXIS_CHECK_DISABLE; |
| 302 | } else { |
| 303 | if (abs(dual_trigger_position - sys_position[DUAL_AXIS_SELECT]) > dual_fail_distance) { |
| 304 | system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_DUAL_APPROACH); |
| 305 | mc_reset(); |
| 306 | protocol_execute_realtime(); |
| 307 | return; |
| 308 | } |
| 309 | } |
| 310 | } else { |
| 311 | dual_axis_async_check |= DUAL_AXIS_CHECK_ENABLE; |
| 312 | dual_trigger_position = sys_position[DUAL_AXIS_SELECT]; |
| 313 | } |
| 314 | } |
| 315 | #endif |
| 316 | } |
| 317 | |
| 318 | st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us. |
| 319 | |
| 320 | // Exit routines: No time to run protocol_execute_realtime() in this loop. |
| 321 | if (sys_rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_STOP)) { |
| 322 | uint8_t rt_exec = sys_rt_exec_state; |
| 323 | // Homing failure condition: Reset issued during cycle. |
| 324 | if (rt_exec & EXEC_RESET) { system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_RESET); } |
| 325 | // Homing failure condition: Safety door was opened. |
| 326 | if (rt_exec & EXEC_SAFETY_DOOR) { system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_DOOR); } |
| 327 | // Homing failure condition: Limit switch still engaged after pull-off motion |
| 328 | if (!approach && (limits_get_state() & cycle_mask)) { system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_PULLOFF); } |
| 329 | // Homing failure condition: Limit switch not found during approach. |
| 330 | if (approach && (rt_exec & EXEC_CYCLE_STOP)) { system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_APPROACH); } |
| 331 | if (sys_rt_exec_alarm) { |
| 332 | mc_reset(); // Stop motors, if they are running. |
| 333 | protocol_execute_realtime(); |
| 334 | return; |
| 335 | } else { |
| 336 | // Pull-off motion complete. Disable CYCLE_STOP from executing. |
| 337 | system_clear_exec_state_flag(EXEC_CYCLE_STOP); |
| 338 | break; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | #ifdef ENABLE_DUAL_AXIS |
| 343 | } while ((STEP_MASK & axislock) || (sys.homing_axis_lock_dual)); |
| 344 | #else |
| 345 | } while (STEP_MASK & axislock); |
| 346 | #endif |
| 347 | |
| 348 | st_reset(); // Immediately force kill steppers and reset step segment buffer. |
| 349 | delay_ms(settings.homing_debounce_delay); // Delay to allow transient dynamics to dissipate. |
| 350 | |
| 351 | // Reverse direction and reset homing rate for locate cycle(s). |
| 352 | approach = !approach; |
| 353 | |
| 354 | // After first cycle, homing enters locating phase. Shorten search to pull-off distance. |
| 355 | if (approach) { |
| 356 | max_travel = settings.homing_pulloff*HOMING_AXIS_LOCATE_SCALAR; |
| 357 | homing_rate = settings.homing_feed_rate; |
| 358 | } else { |
| 359 | max_travel = settings.homing_pulloff; |
| 360 | homing_rate = settings.homing_seek_rate; |
| 361 | } |
| 362 | |
| 363 | } while (n_cycle-- > 0); |
| 364 | |
| 365 | // The active cycle axes should now be homed and machine limits have been located. By |
| 366 | // default, Grbl defines machine space as all negative, as do most CNCs. Since limit switches |
| 367 | // can be on either side of an axes, check and set axes machine zero appropriately. Also, |
| 368 | // set up pull-off maneuver from axes limit switches that have been homed. This provides |
| 369 | // some initial clearance off the switches and should also help prevent them from falsely |
| 370 | // triggering when hard limits are enabled or when more than one axes shares a limit pin. |
| 371 | int32_t set_axis_position; |
| 372 | // Set machine positions for homed limit switches. Don't update non-homed axes. |
| 373 | for (idx=0; idx<N_AXIS; idx++) { |
| 374 | // NOTE: settings.max_travel[] is stored as a negative value. |
| 375 | if (cycle_mask & bit(idx)) { |
| 376 | #ifdef HOMING_FORCE_SET_ORIGIN |
| 377 | set_axis_position = 0; |
| 378 | #else |
| 379 | if ( bit_istrue(settings.homing_dir_mask,bit(idx)) ) { |
| 380 | set_axis_position = lround((settings.max_travel[idx]+settings.homing_pulloff)*settings.steps_per_mm[idx]); |
| 381 | } else { |
| 382 | set_axis_position = lround(-settings.homing_pulloff*settings.steps_per_mm[idx]); |
| 383 | } |
| 384 | #endif |
| 385 | |
| 386 | #ifdef COREXY |
| 387 | if (idx==X_AXIS) { |
| 388 | int32_t off_axis_position = system_convert_corexy_to_y_axis_steps(sys_position); |
| 389 | sys_position[A_MOTOR] = set_axis_position + off_axis_position; |
| 390 | sys_position[B_MOTOR] = set_axis_position - off_axis_position; |
| 391 | } else if (idx==Y_AXIS) { |
| 392 | int32_t off_axis_position = system_convert_corexy_to_x_axis_steps(sys_position); |
| 393 | sys_position[A_MOTOR] = off_axis_position + set_axis_position; |
| 394 | sys_position[B_MOTOR] = off_axis_position - set_axis_position; |
| 395 | } else { |
| 396 | sys_position[idx] = set_axis_position; |
| 397 | } |
| 398 | #else |
| 399 | sys_position[idx] = set_axis_position; |
| 400 | #endif |
| 401 | |
| 402 | } |
| 403 | } |
| 404 | sys.step_control = STEP_CONTROL_NORMAL_OP; // Return step control to normal operation. |
| 405 | } |
| 406 | |
| 407 | |
| 408 | // Performs a soft limit check. Called from mc_line() only. Assumes the machine has been homed, |
| 409 | // the workspace volume is in all negative space, and the system is in normal operation. |
| 410 | // NOTE: Used by jogging to limit travel within soft-limit volume. |
| 411 | void limits_soft_check(float *target) |
| 412 | { |
| 413 | if (system_check_travel_limits(target)) { |
| 414 | sys.soft_limit = true; |
| 415 | // Force feed hold if cycle is active. All buffered blocks are guaranteed to be within |
| 416 | // workspace volume so just come to a controlled stop so position is not lost. When complete |
| 417 | // enter alarm mode. |
| 418 | if (sys.state == STATE_CYCLE) { |
| 419 | system_set_exec_state_flag(EXEC_FEED_HOLD); |
| 420 | do { |
| 421 | protocol_execute_realtime(); |
| 422 | if (sys.abort) { return; } |
| 423 | } while ( sys.state != STATE_IDLE ); |
| 424 | } |
| 425 | mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown. |
| 426 | system_set_exec_alarm(EXEC_ALARM_SOFT_LIMIT); // Indicate soft limit critical event |
| 427 | protocol_execute_realtime(); // Execute to enter critical event loop and system abort |
| 428 | return; |
| 429 | } |
| 430 | } |