Luigi Santivetti | 69972f9 | 2019-11-12 22:55:40 +0000 | [diff] [blame] | 1 | /* |
| 2 | nuts_bolts.c - Shared functions |
| 3 | Part of Grbl |
| 4 | |
| 5 | Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC |
| 6 | Copyright (c) 2009-2011 Simen Svale Skogsrud |
| 7 | |
| 8 | Grbl is free software: you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Public License as published by |
| 10 | the Free Software Foundation, either version 3 of the License, or |
| 11 | (at your option) any later version. |
| 12 | |
| 13 | Grbl is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with Grbl. If not, see <http://www.gnu.org/licenses/>. |
| 20 | */ |
| 21 | |
| 22 | #include "grbl.h" |
| 23 | |
| 24 | |
| 25 | #define MAX_INT_DIGITS 8 // Maximum number of digits in int32 (and float) |
| 26 | |
| 27 | |
| 28 | // Extracts a floating point value from a string. The following code is based loosely on |
| 29 | // the avr-libc strtod() function by Michael Stumpf and Dmitry Xmelkov and many freely |
| 30 | // available conversion method examples, but has been highly optimized for Grbl. For known |
| 31 | // CNC applications, the typical decimal value is expected to be in the range of E0 to E-4. |
| 32 | // Scientific notation is officially not supported by g-code, and the 'E' character may |
| 33 | // be a g-code word on some CNC systems. So, 'E' notation will not be recognized. |
| 34 | // NOTE: Thanks to Radu-Eosif Mihailescu for identifying the issues with using strtod(). |
| 35 | uint8_t read_float(char *line, uint8_t *char_counter, float *float_ptr) |
| 36 | { |
| 37 | char *ptr = line + *char_counter; |
| 38 | unsigned char c; |
| 39 | |
| 40 | // Grab first character and increment pointer. No spaces assumed in line. |
| 41 | c = *ptr++; |
| 42 | |
| 43 | // Capture initial positive/minus character |
| 44 | bool isnegative = false; |
| 45 | if (c == '-') { |
| 46 | isnegative = true; |
| 47 | c = *ptr++; |
| 48 | } else if (c == '+') { |
| 49 | c = *ptr++; |
| 50 | } |
| 51 | |
| 52 | // Extract number into fast integer. Track decimal in terms of exponent value. |
| 53 | uint32_t intval = 0; |
| 54 | int8_t exp = 0; |
| 55 | uint8_t ndigit = 0; |
| 56 | bool isdecimal = false; |
| 57 | while(1) { |
| 58 | c -= '0'; |
| 59 | if (c <= 9) { |
| 60 | ndigit++; |
| 61 | if (ndigit <= MAX_INT_DIGITS) { |
| 62 | if (isdecimal) { exp--; } |
| 63 | intval = (((intval << 2) + intval) << 1) + c; // intval*10 + c |
| 64 | } else { |
| 65 | if (!(isdecimal)) { exp++; } // Drop overflow digits |
| 66 | } |
| 67 | } else if (c == (('.'-'0') & 0xff) && !(isdecimal)) { |
| 68 | isdecimal = true; |
| 69 | } else { |
| 70 | break; |
| 71 | } |
| 72 | c = *ptr++; |
| 73 | } |
| 74 | |
| 75 | // Return if no digits have been read. |
| 76 | if (!ndigit) { return(false); }; |
| 77 | |
| 78 | // Convert integer into floating point. |
| 79 | float fval; |
| 80 | fval = (float)intval; |
| 81 | |
| 82 | // Apply decimal. Should perform no more than two floating point multiplications for the |
| 83 | // expected range of E0 to E-4. |
| 84 | if (fval != 0) { |
| 85 | while (exp <= -2) { |
| 86 | fval *= 0.01; |
| 87 | exp += 2; |
| 88 | } |
| 89 | if (exp < 0) { |
| 90 | fval *= 0.1; |
| 91 | } else if (exp > 0) { |
| 92 | do { |
| 93 | fval *= 10.0; |
| 94 | } while (--exp > 0); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | // Assign floating point value with correct sign. |
| 99 | if (isnegative) { |
| 100 | *float_ptr = -fval; |
| 101 | } else { |
| 102 | *float_ptr = fval; |
| 103 | } |
| 104 | |
| 105 | *char_counter = ptr - line - 1; // Set char_counter to next statement |
| 106 | |
| 107 | return(true); |
| 108 | } |
| 109 | |
| 110 | |
| 111 | // Non-blocking delay function used for general operation and suspend features. |
| 112 | void delay_sec(float seconds, uint8_t mode) |
| 113 | { |
| 114 | uint16_t i = ceil(1000/DWELL_TIME_STEP*seconds); |
| 115 | while (i-- > 0) { |
| 116 | if (sys.abort) { return; } |
| 117 | if (mode == DELAY_MODE_DWELL) { |
| 118 | protocol_execute_realtime(); |
| 119 | } else { // DELAY_MODE_SYS_SUSPEND |
| 120 | // Execute rt_system() only to avoid nesting suspend loops. |
| 121 | protocol_exec_rt_system(); |
| 122 | if (sys.suspend & SUSPEND_RESTART_RETRACT) { return; } // Bail, if safety door reopens. |
| 123 | } |
| 124 | _delay_ms(DWELL_TIME_STEP); // Delay DWELL_TIME_STEP increment |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | |
| 129 | // Delays variable defined milliseconds. Compiler compatibility fix for _delay_ms(), |
| 130 | // which only accepts constants in future compiler releases. |
| 131 | void delay_ms(uint16_t ms) |
| 132 | { |
| 133 | while ( ms-- ) { _delay_ms(1); } |
| 134 | } |
| 135 | |
| 136 | |
| 137 | // Delays variable defined microseconds. Compiler compatibility fix for _delay_us(), |
| 138 | // which only accepts constants in future compiler releases. Written to perform more |
| 139 | // efficiently with larger delays, as the counter adds parasitic time in each iteration. |
| 140 | void delay_us(uint32_t us) |
| 141 | { |
| 142 | while (us) { |
| 143 | if (us < 10) { |
| 144 | _delay_us(1); |
| 145 | us--; |
| 146 | } else if (us < 100) { |
| 147 | _delay_us(10); |
| 148 | us -= 10; |
| 149 | } else if (us < 1000) { |
| 150 | _delay_us(100); |
| 151 | us -= 100; |
| 152 | } else { |
| 153 | _delay_ms(1); |
| 154 | us -= 1000; |
| 155 | } |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | |
| 160 | // Simple hypotenuse computation function. |
| 161 | float hypot_f(float x, float y) { return(sqrt(x*x + y*y)); } |
| 162 | |
| 163 | |
| 164 | float convert_delta_vector_to_unit_vector(float *vector) |
| 165 | { |
| 166 | uint8_t idx; |
| 167 | float magnitude = 0.0; |
| 168 | for (idx=0; idx<N_AXIS; idx++) { |
| 169 | if (vector[idx] != 0.0) { |
| 170 | magnitude += vector[idx]*vector[idx]; |
| 171 | } |
| 172 | } |
| 173 | magnitude = sqrt(magnitude); |
| 174 | float inv_magnitude = 1.0/magnitude; |
| 175 | for (idx=0; idx<N_AXIS; idx++) { vector[idx] *= inv_magnitude; } |
| 176 | return(magnitude); |
| 177 | } |
| 178 | |
| 179 | |
| 180 | float limit_value_by_axis_maximum(float *max_value, float *unit_vec) |
| 181 | { |
| 182 | uint8_t idx; |
| 183 | float limit_value = SOME_LARGE_VALUE; |
| 184 | for (idx=0; idx<N_AXIS; idx++) { |
| 185 | if (unit_vec[idx] != 0) { // Avoid divide by zero. |
| 186 | limit_value = min(limit_value,fabs(max_value[idx]/unit_vec[idx])); |
| 187 | } |
| 188 | } |
| 189 | return(limit_value); |
| 190 | } |