| /* |
| protocol.c - controls Grbl execution protocol and procedures |
| Part of Grbl |
| |
| Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC |
| Copyright (c) 2009-2011 Simen Svale Skogsrud |
| |
| Grbl is free software: you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation, either version 3 of the License, or |
| (at your option) any later version. |
| |
| Grbl is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with Grbl. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "grbl.h" |
| |
| // Define line flags. Includes comment type tracking and line overflow detection. |
| #define LINE_FLAG_OVERFLOW bit(0) |
| #define LINE_FLAG_COMMENT_PARENTHESES bit(1) |
| #define LINE_FLAG_COMMENT_SEMICOLON bit(2) |
| |
| |
| static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated. |
| |
| static void protocol_exec_rt_suspend(); |
| |
| |
| /* |
| GRBL PRIMARY LOOP: |
| */ |
| void protocol_main_loop() |
| { |
| // Perform some machine checks to make sure everything is good to go. |
| #ifdef CHECK_LIMITS_AT_INIT |
| if (bit_istrue(settings.flags, BITFLAG_HARD_LIMIT_ENABLE)) { |
| if (limits_get_state()) { |
| sys.state = STATE_ALARM; // Ensure alarm state is active. |
| report_feedback_message(MESSAGE_CHECK_LIMITS); |
| } |
| } |
| #endif |
| // Check for and report alarm state after a reset, error, or an initial power up. |
| // NOTE: Sleep mode disables the stepper drivers and position can't be guaranteed. |
| // Re-initialize the sleep state as an ALARM mode to ensure user homes or acknowledges. |
| if (sys.state & (STATE_ALARM | STATE_SLEEP)) { |
| report_feedback_message(MESSAGE_ALARM_LOCK); |
| sys.state = STATE_ALARM; // Ensure alarm state is set. |
| } else { |
| // Check if the safety door is open. |
| sys.state = STATE_IDLE; |
| if (system_check_safety_door_ajar()) { |
| bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR); |
| protocol_execute_realtime(); // Enter safety door mode. Should return as IDLE state. |
| } |
| // All systems go! |
| system_execute_startup(line); // Execute startup script. |
| } |
| |
| // --------------------------------------------------------------------------------- |
| // Primary loop! Upon a system abort, this exits back to main() to reset the system. |
| // This is also where Grbl idles while waiting for something to do. |
| // --------------------------------------------------------------------------------- |
| |
| uint8_t line_flags = 0; |
| uint8_t char_counter = 0; |
| uint8_t c; |
| for (;;) { |
| |
| // Process one line of incoming serial data, as the data becomes available. Performs an |
| // initial filtering by removing spaces and comments and capitalizing all letters. |
| while((c = serial_read()) != SERIAL_NO_DATA) { |
| if ((c == '\n') || (c == '\r')) { // End of line reached |
| |
| protocol_execute_realtime(); // Runtime command check point. |
| if (sys.abort) { return; } // Bail to calling function upon system abort |
| |
| line[char_counter] = 0; // Set string termination character. |
| #ifdef REPORT_ECHO_LINE_RECEIVED |
| report_echo_line_received(line); |
| #endif |
| |
| // Direct and execute one line of formatted input, and report status of execution. |
| if (line_flags & LINE_FLAG_OVERFLOW) { |
| // Report line overflow error. |
| report_status_message(STATUS_OVERFLOW); |
| } else if (line[0] == 0) { |
| // Empty or comment line. For syncing purposes. |
| report_status_message(STATUS_OK); |
| } else if (line[0] == '$') { |
| // Grbl '$' system command |
| report_status_message(system_execute_line(line)); |
| } else if (sys.state & (STATE_ALARM | STATE_JOG)) { |
| // Everything else is gcode. Block if in alarm or jog mode. |
| report_status_message(STATUS_SYSTEM_GC_LOCK); |
| } else { |
| // Parse and execute g-code block. |
| report_status_message(gc_execute_line(line)); |
| } |
| |
| // Reset tracking data for next line. |
| line_flags = 0; |
| char_counter = 0; |
| |
| } else { |
| |
| if (line_flags) { |
| // Throw away all (except EOL) comment characters and overflow characters. |
| if (c == ')') { |
| // End of '()' comment. Resume line allowed. |
| if (line_flags & LINE_FLAG_COMMENT_PARENTHESES) { line_flags &= ~(LINE_FLAG_COMMENT_PARENTHESES); } |
| } |
| } else { |
| if (c <= ' ') { |
| // Throw away whitepace and control characters |
| } else if (c == '/') { |
| // Block delete NOT SUPPORTED. Ignore character. |
| // NOTE: If supported, would simply need to check the system if block delete is enabled. |
| } else if (c == '(') { |
| // Enable comments flag and ignore all characters until ')' or EOL. |
| // NOTE: This doesn't follow the NIST definition exactly, but is good enough for now. |
| // In the future, we could simply remove the items within the comments, but retain the |
| // comment control characters, so that the g-code parser can error-check it. |
| line_flags |= LINE_FLAG_COMMENT_PARENTHESES; |
| } else if (c == ';') { |
| // NOTE: ';' comment to EOL is a LinuxCNC definition. Not NIST. |
| line_flags |= LINE_FLAG_COMMENT_SEMICOLON; |
| // TODO: Install '%' feature |
| // } else if (c == '%') { |
| // Program start-end percent sign NOT SUPPORTED. |
| // NOTE: This maybe installed to tell Grbl when a program is running vs manual input, |
| // where, during a program, the system auto-cycle start will continue to execute |
| // everything until the next '%' sign. This will help fix resuming issues with certain |
| // functions that empty the planner buffer to execute its task on-time. |
| } else if (char_counter >= (LINE_BUFFER_SIZE-1)) { |
| // Detect line buffer overflow and set flag. |
| line_flags |= LINE_FLAG_OVERFLOW; |
| } else if (c >= 'a' && c <= 'z') { // Upcase lowercase |
| line[char_counter++] = c-'a'+'A'; |
| } else { |
| line[char_counter++] = c; |
| } |
| } |
| |
| } |
| } |
| |
| // If there are no more characters in the serial read buffer to be processed and executed, |
| // this indicates that g-code streaming has either filled the planner buffer or has |
| // completed. In either case, auto-cycle start, if enabled, any queued moves. |
| protocol_auto_cycle_start(); |
| |
| protocol_execute_realtime(); // Runtime command check point. |
| if (sys.abort) { return; } // Bail to main() program loop to reset system. |
| } |
| |
| return; /* Never reached */ |
| } |
| |
| |
| // Block until all buffered steps are executed or in a cycle state. Works with feed hold |
| // during a synchronize call, if it should happen. Also, waits for clean cycle end. |
| void protocol_buffer_synchronize() |
| { |
| // If system is queued, ensure cycle resumes if the auto start flag is present. |
| protocol_auto_cycle_start(); |
| do { |
| protocol_execute_realtime(); // Check and execute run-time commands |
| if (sys.abort) { return; } // Check for system abort |
| } while (plan_get_current_block() || (sys.state == STATE_CYCLE)); |
| } |
| |
| |
| // Auto-cycle start triggers when there is a motion ready to execute and if the main program is not |
| // actively parsing commands. |
| // NOTE: This function is called from the main loop, buffer sync, and mc_line() only and executes |
| // when one of these conditions exist respectively: There are no more blocks sent (i.e. streaming |
| // is finished, single commands), a command that needs to wait for the motions in the buffer to |
| // execute calls a buffer sync, or the planner buffer is full and ready to go. |
| void protocol_auto_cycle_start() |
| { |
| if (plan_get_current_block() != NULL) { // Check if there are any blocks in the buffer. |
| system_set_exec_state_flag(EXEC_CYCLE_START); // If so, execute them! |
| } |
| } |
| |
| |
| // This function is the general interface to Grbl's real-time command execution system. It is called |
| // from various check points in the main program, primarily where there may be a while loop waiting |
| // for a buffer to clear space or any point where the execution time from the last check point may |
| // be more than a fraction of a second. This is a way to execute realtime commands asynchronously |
| // (aka multitasking) with grbl's g-code parsing and planning functions. This function also serves |
| // as an interface for the interrupts to set the system realtime flags, where only the main program |
| // handles them, removing the need to define more computationally-expensive volatile variables. This |
| // also provides a controlled way to execute certain tasks without having two or more instances of |
| // the same task, such as the planner recalculating the buffer upon a feedhold or overrides. |
| // NOTE: The sys_rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts, |
| // limit switches, or the main program. |
| void protocol_execute_realtime() |
| { |
| protocol_exec_rt_system(); |
| if (sys.suspend) { protocol_exec_rt_suspend(); } |
| } |
| |
| |
| // Executes run-time commands, when required. This function primarily operates as Grbl's state |
| // machine and controls the various real-time features Grbl has to offer. |
| // NOTE: Do not alter this unless you know exactly what you are doing! |
| void protocol_exec_rt_system() |
| { |
| uint8_t rt_exec; // Temp variable to avoid calling volatile multiple times. |
| rt_exec = sys_rt_exec_alarm; // Copy volatile sys_rt_exec_alarm. |
| if (rt_exec) { // Enter only if any bit flag is true |
| // System alarm. Everything has shutdown by something that has gone severely wrong. Report |
| // the source of the error to the user. If critical, Grbl disables by entering an infinite |
| // loop until system reset/abort. |
| sys.state = STATE_ALARM; // Set system alarm state |
| report_alarm_message(rt_exec); |
| // Halt everything upon a critical event flag. Currently hard and soft limits flag this. |
| if ((rt_exec == EXEC_ALARM_HARD_LIMIT) || (rt_exec == EXEC_ALARM_SOFT_LIMIT)) { |
| report_feedback_message(MESSAGE_CRITICAL_EVENT); |
| system_clear_exec_state_flag(EXEC_RESET); // Disable any existing reset |
| do { |
| // Block everything, except reset and status reports, until user issues reset or power |
| // cycles. Hard limits typically occur while unattended or not paying attention. Gives |
| // the user and a GUI time to do what is needed before resetting, like killing the |
| // incoming stream. The same could be said about soft limits. While the position is not |
| // lost, continued streaming could cause a serious crash if by chance it gets executed. |
| } while (bit_isfalse(sys_rt_exec_state,EXEC_RESET)); |
| } |
| system_clear_exec_alarm(); // Clear alarm |
| } |
| |
| rt_exec = sys_rt_exec_state; // Copy volatile sys_rt_exec_state. |
| if (rt_exec) { |
| |
| // Execute system abort. |
| if (rt_exec & EXEC_RESET) { |
| sys.abort = true; // Only place this is set true. |
| return; // Nothing else to do but exit. |
| } |
| |
| // Execute and serial print status |
| if (rt_exec & EXEC_STATUS_REPORT) { |
| report_realtime_status(); |
| system_clear_exec_state_flag(EXEC_STATUS_REPORT); |
| } |
| |
| // NOTE: Once hold is initiated, the system immediately enters a suspend state to block all |
| // main program processes until either reset or resumed. This ensures a hold completes safely. |
| if (rt_exec & (EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR | EXEC_SLEEP)) { |
| |
| // State check for allowable states for hold methods. |
| if (!(sys.state & (STATE_ALARM | STATE_CHECK_MODE))) { |
| |
| // If in CYCLE or JOG states, immediately initiate a motion HOLD. |
| if (sys.state & (STATE_CYCLE | STATE_JOG)) { |
| if (!(sys.suspend & (SUSPEND_MOTION_CANCEL | SUSPEND_JOG_CANCEL))) { // Block, if already holding. |
| st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration. |
| sys.step_control = STEP_CONTROL_EXECUTE_HOLD; // Initiate suspend state with active flag. |
| if (sys.state == STATE_JOG) { // Jog cancelled upon any hold event, except for sleeping. |
| if (!(rt_exec & EXEC_SLEEP)) { sys.suspend |= SUSPEND_JOG_CANCEL; } |
| } |
| } |
| } |
| // If IDLE, Grbl is not in motion. Simply indicate suspend state and hold is complete. |
| if (sys.state == STATE_IDLE) { sys.suspend = SUSPEND_HOLD_COMPLETE; } |
| |
| // Execute and flag a motion cancel with deceleration and return to idle. Used primarily by probing cycle |
| // to halt and cancel the remainder of the motion. |
| if (rt_exec & EXEC_MOTION_CANCEL) { |
| // MOTION_CANCEL only occurs during a CYCLE, but a HOLD and SAFETY_DOOR may been initiated beforehand |
| // to hold the CYCLE. Motion cancel is valid for a single planner block motion only, while jog cancel |
| // will handle and clear multiple planner block motions. |
| if (!(sys.state & STATE_JOG)) { sys.suspend |= SUSPEND_MOTION_CANCEL; } // NOTE: State is STATE_CYCLE. |
| } |
| |
| // Execute a feed hold with deceleration, if required. Then, suspend system. |
| if (rt_exec & EXEC_FEED_HOLD) { |
| // Block SAFETY_DOOR, JOG, and SLEEP states from changing to HOLD state. |
| if (!(sys.state & (STATE_SAFETY_DOOR | STATE_JOG | STATE_SLEEP))) { sys.state = STATE_HOLD; } |
| } |
| |
| // Execute a safety door stop with a feed hold and disable spindle/coolant. |
| // NOTE: Safety door differs from feed holds by stopping everything no matter state, disables powered |
| // devices (spindle/coolant), and blocks resuming until switch is re-engaged. |
| if (rt_exec & EXEC_SAFETY_DOOR) { |
| report_feedback_message(MESSAGE_SAFETY_DOOR_AJAR); |
| // If jogging, block safety door methods until jog cancel is complete. Just flag that it happened. |
| if (!(sys.suspend & SUSPEND_JOG_CANCEL)) { |
| // Check if the safety re-opened during a restore parking motion only. Ignore if |
| // already retracting, parked or in sleep state. |
| if (sys.state == STATE_SAFETY_DOOR) { |
| if (sys.suspend & SUSPEND_INITIATE_RESTORE) { // Actively restoring |
| #ifdef PARKING_ENABLE |
| // Set hold and reset appropriate control flags to restart parking sequence. |
| if (sys.step_control & STEP_CONTROL_EXECUTE_SYS_MOTION) { |
| st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration. |
| sys.step_control = (STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION); |
| sys.suspend &= ~(SUSPEND_HOLD_COMPLETE); |
| } // else NO_MOTION is active. |
| #endif |
| sys.suspend &= ~(SUSPEND_RETRACT_COMPLETE | SUSPEND_INITIATE_RESTORE | SUSPEND_RESTORE_COMPLETE); |
| sys.suspend |= SUSPEND_RESTART_RETRACT; |
| } |
| } |
| if (sys.state != STATE_SLEEP) { sys.state = STATE_SAFETY_DOOR; } |
| } |
| // NOTE: This flag doesn't change when the door closes, unlike sys.state. Ensures any parking motions |
| // are executed if the door switch closes and the state returns to HOLD. |
| sys.suspend |= SUSPEND_SAFETY_DOOR_AJAR; |
| } |
| |
| } |
| |
| if (rt_exec & EXEC_SLEEP) { |
| if (sys.state == STATE_ALARM) { sys.suspend |= (SUSPEND_RETRACT_COMPLETE|SUSPEND_HOLD_COMPLETE); } |
| sys.state = STATE_SLEEP; |
| } |
| |
| system_clear_exec_state_flag((EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR | EXEC_SLEEP)); |
| } |
| |
| // Execute a cycle start by starting the stepper interrupt to begin executing the blocks in queue. |
| if (rt_exec & EXEC_CYCLE_START) { |
| // Block if called at same time as the hold commands: feed hold, motion cancel, and safety door. |
| // Ensures auto-cycle-start doesn't resume a hold without an explicit user-input. |
| if (!(rt_exec & (EXEC_FEED_HOLD | EXEC_MOTION_CANCEL | EXEC_SAFETY_DOOR))) { |
| // Resume door state when parking motion has retracted and door has been closed. |
| if ((sys.state == STATE_SAFETY_DOOR) && !(sys.suspend & SUSPEND_SAFETY_DOOR_AJAR)) { |
| if (sys.suspend & SUSPEND_RESTORE_COMPLETE) { |
| sys.state = STATE_IDLE; // Set to IDLE to immediately resume the cycle. |
| } else if (sys.suspend & SUSPEND_RETRACT_COMPLETE) { |
| // Flag to re-energize powered components and restore original position, if disabled by SAFETY_DOOR. |
| // NOTE: For a safety door to resume, the switch must be closed, as indicated by HOLD state, and |
| // the retraction execution is complete, which implies the initial feed hold is not active. To |
| // restore normal operation, the restore procedures must be initiated by the following flag. Once, |
| // they are complete, it will call CYCLE_START automatically to resume and exit the suspend. |
| sys.suspend |= SUSPEND_INITIATE_RESTORE; |
| } |
| } |
| // Cycle start only when IDLE or when a hold is complete and ready to resume. |
| if ((sys.state == STATE_IDLE) || ((sys.state & STATE_HOLD) && (sys.suspend & SUSPEND_HOLD_COMPLETE))) { |
| if (sys.state == STATE_HOLD && sys.spindle_stop_ovr) { |
| sys.spindle_stop_ovr |= SPINDLE_STOP_OVR_RESTORE_CYCLE; // Set to restore in suspend routine and cycle start after. |
| } else { |
| // Start cycle only if queued motions exist in planner buffer and the motion is not canceled. |
| sys.step_control = STEP_CONTROL_NORMAL_OP; // Restore step control to normal operation |
| if (plan_get_current_block() && bit_isfalse(sys.suspend,SUSPEND_MOTION_CANCEL)) { |
| sys.suspend = SUSPEND_DISABLE; // Break suspend state. |
| sys.state = STATE_CYCLE; |
| st_prep_buffer(); // Initialize step segment buffer before beginning cycle. |
| st_wake_up(); |
| } else { // Otherwise, do nothing. Set and resume IDLE state. |
| sys.suspend = SUSPEND_DISABLE; // Break suspend state. |
| sys.state = STATE_IDLE; |
| } |
| } |
| } |
| } |
| system_clear_exec_state_flag(EXEC_CYCLE_START); |
| } |
| |
| if (rt_exec & EXEC_CYCLE_STOP) { |
| // Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by |
| // realtime command execution in the main program, ensuring that the planner re-plans safely. |
| // NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper |
| // cycle reinitializations. The stepper path should continue exactly as if nothing has happened. |
| // NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes. |
| if ((sys.state & (STATE_HOLD|STATE_SAFETY_DOOR|STATE_SLEEP)) && !(sys.soft_limit) && !(sys.suspend & SUSPEND_JOG_CANCEL)) { |
| // Hold complete. Set to indicate ready to resume. Remain in HOLD or DOOR states until user |
| // has issued a resume command or reset. |
| plan_cycle_reinitialize(); |
| if (sys.step_control & STEP_CONTROL_EXECUTE_HOLD) { sys.suspend |= SUSPEND_HOLD_COMPLETE; } |
| bit_false(sys.step_control,(STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION)); |
| } else { |
| // Motion complete. Includes CYCLE/JOG/HOMING states and jog cancel/motion cancel/soft limit events. |
| // NOTE: Motion and jog cancel both immediately return to idle after the hold completes. |
| if (sys.suspend & SUSPEND_JOG_CANCEL) { // For jog cancel, flush buffers and sync positions. |
| sys.step_control = STEP_CONTROL_NORMAL_OP; |
| plan_reset(); |
| st_reset(); |
| gc_sync_position(); |
| plan_sync_position(); |
| } |
| if (sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) { // Only occurs when safety door opens during jog. |
| sys.suspend &= ~(SUSPEND_JOG_CANCEL); |
| sys.suspend |= SUSPEND_HOLD_COMPLETE; |
| sys.state = STATE_SAFETY_DOOR; |
| } else { |
| sys.suspend = SUSPEND_DISABLE; |
| sys.state = STATE_IDLE; |
| } |
| } |
| system_clear_exec_state_flag(EXEC_CYCLE_STOP); |
| } |
| } |
| |
| // Execute overrides. |
| rt_exec = sys_rt_exec_motion_override; // Copy volatile sys_rt_exec_motion_override |
| if (rt_exec) { |
| system_clear_exec_motion_overrides(); // Clear all motion override flags. |
| |
| uint8_t new_f_override = sys.f_override; |
| if (rt_exec & EXEC_FEED_OVR_RESET) { new_f_override = DEFAULT_FEED_OVERRIDE; } |
| if (rt_exec & EXEC_FEED_OVR_COARSE_PLUS) { new_f_override += FEED_OVERRIDE_COARSE_INCREMENT; } |
| if (rt_exec & EXEC_FEED_OVR_COARSE_MINUS) { new_f_override -= FEED_OVERRIDE_COARSE_INCREMENT; } |
| if (rt_exec & EXEC_FEED_OVR_FINE_PLUS) { new_f_override += FEED_OVERRIDE_FINE_INCREMENT; } |
| if (rt_exec & EXEC_FEED_OVR_FINE_MINUS) { new_f_override -= FEED_OVERRIDE_FINE_INCREMENT; } |
| new_f_override = min(new_f_override,MAX_FEED_RATE_OVERRIDE); |
| new_f_override = max(new_f_override,MIN_FEED_RATE_OVERRIDE); |
| |
| uint8_t new_r_override = sys.r_override; |
| if (rt_exec & EXEC_RAPID_OVR_RESET) { new_r_override = DEFAULT_RAPID_OVERRIDE; } |
| if (rt_exec & EXEC_RAPID_OVR_MEDIUM) { new_r_override = RAPID_OVERRIDE_MEDIUM; } |
| if (rt_exec & EXEC_RAPID_OVR_LOW) { new_r_override = RAPID_OVERRIDE_LOW; } |
| |
| if ((new_f_override != sys.f_override) || (new_r_override != sys.r_override)) { |
| sys.f_override = new_f_override; |
| sys.r_override = new_r_override; |
| sys.report_ovr_counter = 0; // Set to report change immediately |
| plan_update_velocity_profile_parameters(); |
| plan_cycle_reinitialize(); |
| } |
| } |
| |
| rt_exec = sys_rt_exec_accessory_override; |
| if (rt_exec) { |
| system_clear_exec_accessory_overrides(); // Clear all accessory override flags. |
| |
| // NOTE: Unlike motion overrides, spindle overrides do not require a planner reinitialization. |
| uint8_t last_s_override = sys.spindle_speed_ovr; |
| if (rt_exec & EXEC_SPINDLE_OVR_RESET) { last_s_override = DEFAULT_SPINDLE_SPEED_OVERRIDE; } |
| if (rt_exec & EXEC_SPINDLE_OVR_COARSE_PLUS) { last_s_override += SPINDLE_OVERRIDE_COARSE_INCREMENT; } |
| if (rt_exec & EXEC_SPINDLE_OVR_COARSE_MINUS) { last_s_override -= SPINDLE_OVERRIDE_COARSE_INCREMENT; } |
| if (rt_exec & EXEC_SPINDLE_OVR_FINE_PLUS) { last_s_override += SPINDLE_OVERRIDE_FINE_INCREMENT; } |
| if (rt_exec & EXEC_SPINDLE_OVR_FINE_MINUS) { last_s_override -= SPINDLE_OVERRIDE_FINE_INCREMENT; } |
| last_s_override = min(last_s_override,MAX_SPINDLE_SPEED_OVERRIDE); |
| last_s_override = max(last_s_override,MIN_SPINDLE_SPEED_OVERRIDE); |
| |
| if (last_s_override != sys.spindle_speed_ovr) { |
| sys.spindle_speed_ovr = last_s_override; |
| // NOTE: Spindle speed overrides during HOLD state are taken care of by suspend function. |
| if (sys.state == STATE_IDLE) { spindle_set_state(gc_state.modal.spindle, gc_state.spindle_speed); } |
| else { bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); } |
| sys.report_ovr_counter = 0; // Set to report change immediately |
| } |
| |
| if (rt_exec & EXEC_SPINDLE_OVR_STOP) { |
| // Spindle stop override allowed only while in HOLD state. |
| // NOTE: Report counters are set in spindle_set_state() when spindle stop is executed. |
| if (sys.state == STATE_HOLD) { |
| if (!(sys.spindle_stop_ovr)) { sys.spindle_stop_ovr = SPINDLE_STOP_OVR_INITIATE; } |
| else if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_ENABLED) { sys.spindle_stop_ovr |= SPINDLE_STOP_OVR_RESTORE; } |
| } |
| } |
| |
| // NOTE: Since coolant state always performs a planner sync whenever it changes, the current |
| // run state can be determined by checking the parser state. |
| // NOTE: Coolant overrides only operate during IDLE, CYCLE, HOLD, and JOG states. Ignored otherwise. |
| if (rt_exec & (EXEC_COOLANT_FLOOD_OVR_TOGGLE | EXEC_COOLANT_MIST_OVR_TOGGLE)) { |
| if ((sys.state == STATE_IDLE) || (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_JOG))) { |
| uint8_t coolant_state = gc_state.modal.coolant; |
| #ifdef ENABLE_M7 |
| if (rt_exec & EXEC_COOLANT_MIST_OVR_TOGGLE) { |
| if (coolant_state & COOLANT_MIST_ENABLE) { bit_false(coolant_state,COOLANT_MIST_ENABLE); } |
| else { coolant_state |= COOLANT_MIST_ENABLE; } |
| } |
| if (rt_exec & EXEC_COOLANT_FLOOD_OVR_TOGGLE) { |
| if (coolant_state & COOLANT_FLOOD_ENABLE) { bit_false(coolant_state,COOLANT_FLOOD_ENABLE); } |
| else { coolant_state |= COOLANT_FLOOD_ENABLE; } |
| } |
| #else |
| if (coolant_state & COOLANT_FLOOD_ENABLE) { bit_false(coolant_state,COOLANT_FLOOD_ENABLE); } |
| else { coolant_state |= COOLANT_FLOOD_ENABLE; } |
| #endif |
| coolant_set_state(coolant_state); // Report counter set in coolant_set_state(). |
| gc_state.modal.coolant = coolant_state; |
| } |
| } |
| } |
| |
| #ifdef DEBUG |
| if (sys_rt_exec_debug) { |
| report_realtime_debug(); |
| sys_rt_exec_debug = 0; |
| } |
| #endif |
| |
| // Reload step segment buffer |
| if (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_SAFETY_DOOR | STATE_HOMING | STATE_SLEEP| STATE_JOG)) { |
| st_prep_buffer(); |
| } |
| |
| } |
| |
| |
| // Handles Grbl system suspend procedures, such as feed hold, safety door, and parking motion. |
| // The system will enter this loop, create local variables for suspend tasks, and return to |
| // whatever function that invoked the suspend, such that Grbl resumes normal operation. |
| // This function is written in a way to promote custom parking motions. Simply use this as a |
| // template |
| static void protocol_exec_rt_suspend() |
| { |
| #ifdef PARKING_ENABLE |
| // Declare and initialize parking local variables |
| float restore_target[N_AXIS]; |
| float parking_target[N_AXIS]; |
| float retract_waypoint = PARKING_PULLOUT_INCREMENT; |
| plan_line_data_t plan_data; |
| plan_line_data_t *pl_data = &plan_data; |
| memset(pl_data,0,sizeof(plan_line_data_t)); |
| pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE); |
| #ifdef USE_LINE_NUMBERS |
| pl_data->line_number = PARKING_MOTION_LINE_NUMBER; |
| #endif |
| #endif |
| |
| plan_block_t *block = plan_get_current_block(); |
| uint8_t restore_condition; |
| #ifdef VARIABLE_SPINDLE |
| float restore_spindle_speed; |
| if (block == NULL) { |
| restore_condition = (gc_state.modal.spindle | gc_state.modal.coolant); |
| restore_spindle_speed = gc_state.spindle_speed; |
| } else { |
| restore_condition = (block->condition & PL_COND_SPINDLE_MASK) | coolant_get_state(); |
| restore_spindle_speed = block->spindle_speed; |
| } |
| #ifdef DISABLE_LASER_DURING_HOLD |
| if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) { |
| system_set_exec_accessory_override_flag(EXEC_SPINDLE_OVR_STOP); |
| } |
| #endif |
| #else |
| if (block == NULL) { restore_condition = (gc_state.modal.spindle | gc_state.modal.coolant); } |
| else { restore_condition = (block->condition & PL_COND_SPINDLE_MASK) | coolant_get_state(); } |
| #endif |
| |
| while (sys.suspend) { |
| |
| if (sys.abort) { return; } |
| |
| // Block until initial hold is complete and the machine has stopped motion. |
| if (sys.suspend & SUSPEND_HOLD_COMPLETE) { |
| |
| // Parking manager. Handles de/re-energizing, switch state checks, and parking motions for |
| // the safety door and sleep states. |
| if (sys.state & (STATE_SAFETY_DOOR | STATE_SLEEP)) { |
| |
| // Handles retraction motions and de-energizing. |
| if (bit_isfalse(sys.suspend,SUSPEND_RETRACT_COMPLETE)) { |
| |
| // Ensure any prior spindle stop override is disabled at start of safety door routine. |
| sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; |
| |
| #ifndef PARKING_ENABLE |
| |
| spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize |
| coolant_set_state(COOLANT_DISABLE); // De-energize |
| |
| #else |
| |
| // Get current position and store restore location and spindle retract waypoint. |
| system_convert_array_steps_to_mpos(parking_target,sys_position); |
| if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { |
| memcpy(restore_target,parking_target,sizeof(parking_target)); |
| retract_waypoint += restore_target[PARKING_AXIS]; |
| retract_waypoint = min(retract_waypoint,PARKING_TARGET); |
| } |
| |
| // Execute slow pull-out parking retract motion. Parking requires homing enabled, the |
| // current location not exceeding the parking target location, and laser mode disabled. |
| // NOTE: State is will remain DOOR, until the de-energizing and retract is complete. |
| #ifdef ENABLE_PARKING_OVERRIDE_CONTROL |
| if ((bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) && |
| (parking_target[PARKING_AXIS] < PARKING_TARGET) && |
| bit_isfalse(settings.flags,BITFLAG_LASER_MODE) && |
| (sys.override_ctrl == OVERRIDE_PARKING_MOTION)) { |
| #else |
| if ((bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) && |
| (parking_target[PARKING_AXIS] < PARKING_TARGET) && |
| bit_isfalse(settings.flags,BITFLAG_LASER_MODE)) { |
| #endif |
| // Retract spindle by pullout distance. Ensure retraction motion moves away from |
| // the workpiece and waypoint motion doesn't exceed the parking target location. |
| if (parking_target[PARKING_AXIS] < retract_waypoint) { |
| parking_target[PARKING_AXIS] = retract_waypoint; |
| pl_data->feed_rate = PARKING_PULLOUT_RATE; |
| pl_data->condition |= (restore_condition & PL_COND_ACCESSORY_MASK); // Retain accessory state |
| pl_data->spindle_speed = restore_spindle_speed; |
| mc_parking_motion(parking_target, pl_data); |
| } |
| |
| // NOTE: Clear accessory state after retract and after an aborted restore motion. |
| pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE); |
| pl_data->spindle_speed = 0.0; |
| spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize |
| coolant_set_state(COOLANT_DISABLE); // De-energize |
| |
| // Execute fast parking retract motion to parking target location. |
| if (parking_target[PARKING_AXIS] < PARKING_TARGET) { |
| parking_target[PARKING_AXIS] = PARKING_TARGET; |
| pl_data->feed_rate = PARKING_RATE; |
| mc_parking_motion(parking_target, pl_data); |
| } |
| |
| } else { |
| |
| // Parking motion not possible. Just disable the spindle and coolant. |
| // NOTE: Laser mode does not start a parking motion to ensure the laser stops immediately. |
| spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize |
| coolant_set_state(COOLANT_DISABLE); // De-energize |
| |
| } |
| |
| #endif |
| |
| sys.suspend &= ~(SUSPEND_RESTART_RETRACT); |
| sys.suspend |= SUSPEND_RETRACT_COMPLETE; |
| |
| } else { |
| |
| |
| if (sys.state == STATE_SLEEP) { |
| report_feedback_message(MESSAGE_SLEEP_MODE); |
| // Spindle and coolant should already be stopped, but do it again just to be sure. |
| spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize |
| coolant_set_state(COOLANT_DISABLE); // De-energize |
| st_go_idle(); // Disable steppers |
| while (!(sys.abort)) { protocol_exec_rt_system(); } // Do nothing until reset. |
| return; // Abort received. Return to re-initialize. |
| } |
| |
| // Allows resuming from parking/safety door. Actively checks if safety door is closed and ready to resume. |
| if (sys.state == STATE_SAFETY_DOOR) { |
| if (!(system_check_safety_door_ajar())) { |
| sys.suspend &= ~(SUSPEND_SAFETY_DOOR_AJAR); // Reset door ajar flag to denote ready to resume. |
| } |
| } |
| |
| // Handles parking restore and safety door resume. |
| if (sys.suspend & SUSPEND_INITIATE_RESTORE) { |
| |
| #ifdef PARKING_ENABLE |
| // Execute fast restore motion to the pull-out position. Parking requires homing enabled. |
| // NOTE: State is will remain DOOR, until the de-energizing and retract is complete. |
| #ifdef ENABLE_PARKING_OVERRIDE_CONTROL |
| if (((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) && |
| (sys.override_ctrl == OVERRIDE_PARKING_MOTION)) { |
| #else |
| if ((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) { |
| #endif |
| // Check to ensure the motion doesn't move below pull-out position. |
| if (parking_target[PARKING_AXIS] <= PARKING_TARGET) { |
| parking_target[PARKING_AXIS] = retract_waypoint; |
| pl_data->feed_rate = PARKING_RATE; |
| mc_parking_motion(parking_target, pl_data); |
| } |
| } |
| #endif |
| |
| // Delayed Tasks: Restart spindle and coolant, delay to power-up, then resume cycle. |
| if (gc_state.modal.spindle != SPINDLE_DISABLE) { |
| // Block if safety door re-opened during prior restore actions. |
| if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { |
| if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) { |
| // When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts. |
| bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); |
| } else { |
| spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed); |
| delay_sec(SAFETY_DOOR_SPINDLE_DELAY, DELAY_MODE_SYS_SUSPEND); |
| } |
| } |
| } |
| if (gc_state.modal.coolant != COOLANT_DISABLE) { |
| // Block if safety door re-opened during prior restore actions. |
| if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { |
| // NOTE: Laser mode will honor this delay. An exhaust system is often controlled by this pin. |
| coolant_set_state((restore_condition & (PL_COND_FLAG_COOLANT_FLOOD | PL_COND_FLAG_COOLANT_MIST))); |
| delay_sec(SAFETY_DOOR_COOLANT_DELAY, DELAY_MODE_SYS_SUSPEND); |
| } |
| } |
| |
| #ifdef PARKING_ENABLE |
| // Execute slow plunge motion from pull-out position to resume position. |
| #ifdef ENABLE_PARKING_OVERRIDE_CONTROL |
| if (((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) && |
| (sys.override_ctrl == OVERRIDE_PARKING_MOTION)) { |
| #else |
| if ((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) { |
| #endif |
| // Block if safety door re-opened during prior restore actions. |
| if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { |
| // Regardless if the retract parking motion was a valid/safe motion or not, the |
| // restore parking motion should logically be valid, either by returning to the |
| // original position through valid machine space or by not moving at all. |
| pl_data->feed_rate = PARKING_PULLOUT_RATE; |
| pl_data->condition |= (restore_condition & PL_COND_ACCESSORY_MASK); // Restore accessory state |
| pl_data->spindle_speed = restore_spindle_speed; |
| mc_parking_motion(restore_target, pl_data); |
| } |
| } |
| #endif |
| |
| if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { |
| sys.suspend |= SUSPEND_RESTORE_COMPLETE; |
| system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program. |
| } |
| } |
| |
| } |
| |
| |
| } else { |
| |
| // Feed hold manager. Controls spindle stop override states. |
| // NOTE: Hold ensured as completed by condition check at the beginning of suspend routine. |
| if (sys.spindle_stop_ovr) { |
| // Handles beginning of spindle stop |
| if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_INITIATE) { |
| if (gc_state.modal.spindle != SPINDLE_DISABLE) { |
| spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize |
| sys.spindle_stop_ovr = SPINDLE_STOP_OVR_ENABLED; // Set stop override state to enabled, if de-energized. |
| } else { |
| sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; // Clear stop override state |
| } |
| // Handles restoring of spindle state |
| } else if (sys.spindle_stop_ovr & (SPINDLE_STOP_OVR_RESTORE | SPINDLE_STOP_OVR_RESTORE_CYCLE)) { |
| if (gc_state.modal.spindle != SPINDLE_DISABLE) { |
| report_feedback_message(MESSAGE_SPINDLE_RESTORE); |
| if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) { |
| // When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts. |
| bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); |
| } else { |
| spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed); |
| } |
| } |
| if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_RESTORE_CYCLE) { |
| system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program. |
| } |
| sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; // Clear stop override state |
| } |
| } else { |
| // Handles spindle state during hold. NOTE: Spindle speed overrides may be altered during hold state. |
| // NOTE: STEP_CONTROL_UPDATE_SPINDLE_PWM is automatically reset upon resume in step generator. |
| if (bit_istrue(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM)) { |
| spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed); |
| bit_false(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); |
| } |
| } |
| |
| } |
| } |
| |
| protocol_exec_rt_system(); |
| |
| } |
| } |