Luigi Santivetti | 69972f9 | 2019-11-12 22:55:40 +0000 | [diff] [blame^] | 1 | /* |
| 2 | protocol.c - controls Grbl execution protocol and procedures |
| 3 | Part of Grbl |
| 4 | |
| 5 | Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC |
| 6 | Copyright (c) 2009-2011 Simen Svale Skogsrud |
| 7 | |
| 8 | Grbl is free software: you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Public License as published by |
| 10 | the Free Software Foundation, either version 3 of the License, or |
| 11 | (at your option) any later version. |
| 12 | |
| 13 | Grbl is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with Grbl. If not, see <http://www.gnu.org/licenses/>. |
| 20 | */ |
| 21 | |
| 22 | #include "grbl.h" |
| 23 | |
| 24 | // Define line flags. Includes comment type tracking and line overflow detection. |
| 25 | #define LINE_FLAG_OVERFLOW bit(0) |
| 26 | #define LINE_FLAG_COMMENT_PARENTHESES bit(1) |
| 27 | #define LINE_FLAG_COMMENT_SEMICOLON bit(2) |
| 28 | |
| 29 | |
| 30 | static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated. |
| 31 | |
| 32 | static void protocol_exec_rt_suspend(); |
| 33 | |
| 34 | |
| 35 | /* |
| 36 | GRBL PRIMARY LOOP: |
| 37 | */ |
| 38 | void protocol_main_loop() |
| 39 | { |
| 40 | // Perform some machine checks to make sure everything is good to go. |
| 41 | #ifdef CHECK_LIMITS_AT_INIT |
| 42 | if (bit_istrue(settings.flags, BITFLAG_HARD_LIMIT_ENABLE)) { |
| 43 | if (limits_get_state()) { |
| 44 | sys.state = STATE_ALARM; // Ensure alarm state is active. |
| 45 | report_feedback_message(MESSAGE_CHECK_LIMITS); |
| 46 | } |
| 47 | } |
| 48 | #endif |
| 49 | // Check for and report alarm state after a reset, error, or an initial power up. |
| 50 | // NOTE: Sleep mode disables the stepper drivers and position can't be guaranteed. |
| 51 | // Re-initialize the sleep state as an ALARM mode to ensure user homes or acknowledges. |
| 52 | if (sys.state & (STATE_ALARM | STATE_SLEEP)) { |
| 53 | report_feedback_message(MESSAGE_ALARM_LOCK); |
| 54 | sys.state = STATE_ALARM; // Ensure alarm state is set. |
| 55 | } else { |
| 56 | // Check if the safety door is open. |
| 57 | sys.state = STATE_IDLE; |
| 58 | if (system_check_safety_door_ajar()) { |
| 59 | bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR); |
| 60 | protocol_execute_realtime(); // Enter safety door mode. Should return as IDLE state. |
| 61 | } |
| 62 | // All systems go! |
| 63 | system_execute_startup(line); // Execute startup script. |
| 64 | } |
| 65 | |
| 66 | // --------------------------------------------------------------------------------- |
| 67 | // Primary loop! Upon a system abort, this exits back to main() to reset the system. |
| 68 | // This is also where Grbl idles while waiting for something to do. |
| 69 | // --------------------------------------------------------------------------------- |
| 70 | |
| 71 | uint8_t line_flags = 0; |
| 72 | uint8_t char_counter = 0; |
| 73 | uint8_t c; |
| 74 | for (;;) { |
| 75 | |
| 76 | // Process one line of incoming serial data, as the data becomes available. Performs an |
| 77 | // initial filtering by removing spaces and comments and capitalizing all letters. |
| 78 | while((c = serial_read()) != SERIAL_NO_DATA) { |
| 79 | if ((c == '\n') || (c == '\r')) { // End of line reached |
| 80 | |
| 81 | protocol_execute_realtime(); // Runtime command check point. |
| 82 | if (sys.abort) { return; } // Bail to calling function upon system abort |
| 83 | |
| 84 | line[char_counter] = 0; // Set string termination character. |
| 85 | #ifdef REPORT_ECHO_LINE_RECEIVED |
| 86 | report_echo_line_received(line); |
| 87 | #endif |
| 88 | |
| 89 | // Direct and execute one line of formatted input, and report status of execution. |
| 90 | if (line_flags & LINE_FLAG_OVERFLOW) { |
| 91 | // Report line overflow error. |
| 92 | report_status_message(STATUS_OVERFLOW); |
| 93 | } else if (line[0] == 0) { |
| 94 | // Empty or comment line. For syncing purposes. |
| 95 | report_status_message(STATUS_OK); |
| 96 | } else if (line[0] == '$') { |
| 97 | // Grbl '$' system command |
| 98 | report_status_message(system_execute_line(line)); |
| 99 | } else if (sys.state & (STATE_ALARM | STATE_JOG)) { |
| 100 | // Everything else is gcode. Block if in alarm or jog mode. |
| 101 | report_status_message(STATUS_SYSTEM_GC_LOCK); |
| 102 | } else { |
| 103 | // Parse and execute g-code block. |
| 104 | report_status_message(gc_execute_line(line)); |
| 105 | } |
| 106 | |
| 107 | // Reset tracking data for next line. |
| 108 | line_flags = 0; |
| 109 | char_counter = 0; |
| 110 | |
| 111 | } else { |
| 112 | |
| 113 | if (line_flags) { |
| 114 | // Throw away all (except EOL) comment characters and overflow characters. |
| 115 | if (c == ')') { |
| 116 | // End of '()' comment. Resume line allowed. |
| 117 | if (line_flags & LINE_FLAG_COMMENT_PARENTHESES) { line_flags &= ~(LINE_FLAG_COMMENT_PARENTHESES); } |
| 118 | } |
| 119 | } else { |
| 120 | if (c <= ' ') { |
| 121 | // Throw away whitepace and control characters |
| 122 | } else if (c == '/') { |
| 123 | // Block delete NOT SUPPORTED. Ignore character. |
| 124 | // NOTE: If supported, would simply need to check the system if block delete is enabled. |
| 125 | } else if (c == '(') { |
| 126 | // Enable comments flag and ignore all characters until ')' or EOL. |
| 127 | // NOTE: This doesn't follow the NIST definition exactly, but is good enough for now. |
| 128 | // In the future, we could simply remove the items within the comments, but retain the |
| 129 | // comment control characters, so that the g-code parser can error-check it. |
| 130 | line_flags |= LINE_FLAG_COMMENT_PARENTHESES; |
| 131 | } else if (c == ';') { |
| 132 | // NOTE: ';' comment to EOL is a LinuxCNC definition. Not NIST. |
| 133 | line_flags |= LINE_FLAG_COMMENT_SEMICOLON; |
| 134 | // TODO: Install '%' feature |
| 135 | // } else if (c == '%') { |
| 136 | // Program start-end percent sign NOT SUPPORTED. |
| 137 | // NOTE: This maybe installed to tell Grbl when a program is running vs manual input, |
| 138 | // where, during a program, the system auto-cycle start will continue to execute |
| 139 | // everything until the next '%' sign. This will help fix resuming issues with certain |
| 140 | // functions that empty the planner buffer to execute its task on-time. |
| 141 | } else if (char_counter >= (LINE_BUFFER_SIZE-1)) { |
| 142 | // Detect line buffer overflow and set flag. |
| 143 | line_flags |= LINE_FLAG_OVERFLOW; |
| 144 | } else if (c >= 'a' && c <= 'z') { // Upcase lowercase |
| 145 | line[char_counter++] = c-'a'+'A'; |
| 146 | } else { |
| 147 | line[char_counter++] = c; |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | // If there are no more characters in the serial read buffer to be processed and executed, |
| 155 | // this indicates that g-code streaming has either filled the planner buffer or has |
| 156 | // completed. In either case, auto-cycle start, if enabled, any queued moves. |
| 157 | protocol_auto_cycle_start(); |
| 158 | |
| 159 | protocol_execute_realtime(); // Runtime command check point. |
| 160 | if (sys.abort) { return; } // Bail to main() program loop to reset system. |
| 161 | } |
| 162 | |
| 163 | return; /* Never reached */ |
| 164 | } |
| 165 | |
| 166 | |
| 167 | // Block until all buffered steps are executed or in a cycle state. Works with feed hold |
| 168 | // during a synchronize call, if it should happen. Also, waits for clean cycle end. |
| 169 | void protocol_buffer_synchronize() |
| 170 | { |
| 171 | // If system is queued, ensure cycle resumes if the auto start flag is present. |
| 172 | protocol_auto_cycle_start(); |
| 173 | do { |
| 174 | protocol_execute_realtime(); // Check and execute run-time commands |
| 175 | if (sys.abort) { return; } // Check for system abort |
| 176 | } while (plan_get_current_block() || (sys.state == STATE_CYCLE)); |
| 177 | } |
| 178 | |
| 179 | |
| 180 | // Auto-cycle start triggers when there is a motion ready to execute and if the main program is not |
| 181 | // actively parsing commands. |
| 182 | // NOTE: This function is called from the main loop, buffer sync, and mc_line() only and executes |
| 183 | // when one of these conditions exist respectively: There are no more blocks sent (i.e. streaming |
| 184 | // is finished, single commands), a command that needs to wait for the motions in the buffer to |
| 185 | // execute calls a buffer sync, or the planner buffer is full and ready to go. |
| 186 | void protocol_auto_cycle_start() |
| 187 | { |
| 188 | if (plan_get_current_block() != NULL) { // Check if there are any blocks in the buffer. |
| 189 | system_set_exec_state_flag(EXEC_CYCLE_START); // If so, execute them! |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | |
| 194 | // This function is the general interface to Grbl's real-time command execution system. It is called |
| 195 | // from various check points in the main program, primarily where there may be a while loop waiting |
| 196 | // for a buffer to clear space or any point where the execution time from the last check point may |
| 197 | // be more than a fraction of a second. This is a way to execute realtime commands asynchronously |
| 198 | // (aka multitasking) with grbl's g-code parsing and planning functions. This function also serves |
| 199 | // as an interface for the interrupts to set the system realtime flags, where only the main program |
| 200 | // handles them, removing the need to define more computationally-expensive volatile variables. This |
| 201 | // also provides a controlled way to execute certain tasks without having two or more instances of |
| 202 | // the same task, such as the planner recalculating the buffer upon a feedhold or overrides. |
| 203 | // NOTE: The sys_rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts, |
| 204 | // limit switches, or the main program. |
| 205 | void protocol_execute_realtime() |
| 206 | { |
| 207 | protocol_exec_rt_system(); |
| 208 | if (sys.suspend) { protocol_exec_rt_suspend(); } |
| 209 | } |
| 210 | |
| 211 | |
| 212 | // Executes run-time commands, when required. This function primarily operates as Grbl's state |
| 213 | // machine and controls the various real-time features Grbl has to offer. |
| 214 | // NOTE: Do not alter this unless you know exactly what you are doing! |
| 215 | void protocol_exec_rt_system() |
| 216 | { |
| 217 | uint8_t rt_exec; // Temp variable to avoid calling volatile multiple times. |
| 218 | rt_exec = sys_rt_exec_alarm; // Copy volatile sys_rt_exec_alarm. |
| 219 | if (rt_exec) { // Enter only if any bit flag is true |
| 220 | // System alarm. Everything has shutdown by something that has gone severely wrong. Report |
| 221 | // the source of the error to the user. If critical, Grbl disables by entering an infinite |
| 222 | // loop until system reset/abort. |
| 223 | sys.state = STATE_ALARM; // Set system alarm state |
| 224 | report_alarm_message(rt_exec); |
| 225 | // Halt everything upon a critical event flag. Currently hard and soft limits flag this. |
| 226 | if ((rt_exec == EXEC_ALARM_HARD_LIMIT) || (rt_exec == EXEC_ALARM_SOFT_LIMIT)) { |
| 227 | report_feedback_message(MESSAGE_CRITICAL_EVENT); |
| 228 | system_clear_exec_state_flag(EXEC_RESET); // Disable any existing reset |
| 229 | do { |
| 230 | // Block everything, except reset and status reports, until user issues reset or power |
| 231 | // cycles. Hard limits typically occur while unattended or not paying attention. Gives |
| 232 | // the user and a GUI time to do what is needed before resetting, like killing the |
| 233 | // incoming stream. The same could be said about soft limits. While the position is not |
| 234 | // lost, continued streaming could cause a serious crash if by chance it gets executed. |
| 235 | } while (bit_isfalse(sys_rt_exec_state,EXEC_RESET)); |
| 236 | } |
| 237 | system_clear_exec_alarm(); // Clear alarm |
| 238 | } |
| 239 | |
| 240 | rt_exec = sys_rt_exec_state; // Copy volatile sys_rt_exec_state. |
| 241 | if (rt_exec) { |
| 242 | |
| 243 | // Execute system abort. |
| 244 | if (rt_exec & EXEC_RESET) { |
| 245 | sys.abort = true; // Only place this is set true. |
| 246 | return; // Nothing else to do but exit. |
| 247 | } |
| 248 | |
| 249 | // Execute and serial print status |
| 250 | if (rt_exec & EXEC_STATUS_REPORT) { |
| 251 | report_realtime_status(); |
| 252 | system_clear_exec_state_flag(EXEC_STATUS_REPORT); |
| 253 | } |
| 254 | |
| 255 | // NOTE: Once hold is initiated, the system immediately enters a suspend state to block all |
| 256 | // main program processes until either reset or resumed. This ensures a hold completes safely. |
| 257 | if (rt_exec & (EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR | EXEC_SLEEP)) { |
| 258 | |
| 259 | // State check for allowable states for hold methods. |
| 260 | if (!(sys.state & (STATE_ALARM | STATE_CHECK_MODE))) { |
| 261 | |
| 262 | // If in CYCLE or JOG states, immediately initiate a motion HOLD. |
| 263 | if (sys.state & (STATE_CYCLE | STATE_JOG)) { |
| 264 | if (!(sys.suspend & (SUSPEND_MOTION_CANCEL | SUSPEND_JOG_CANCEL))) { // Block, if already holding. |
| 265 | st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration. |
| 266 | sys.step_control = STEP_CONTROL_EXECUTE_HOLD; // Initiate suspend state with active flag. |
| 267 | if (sys.state == STATE_JOG) { // Jog cancelled upon any hold event, except for sleeping. |
| 268 | if (!(rt_exec & EXEC_SLEEP)) { sys.suspend |= SUSPEND_JOG_CANCEL; } |
| 269 | } |
| 270 | } |
| 271 | } |
| 272 | // If IDLE, Grbl is not in motion. Simply indicate suspend state and hold is complete. |
| 273 | if (sys.state == STATE_IDLE) { sys.suspend = SUSPEND_HOLD_COMPLETE; } |
| 274 | |
| 275 | // Execute and flag a motion cancel with deceleration and return to idle. Used primarily by probing cycle |
| 276 | // to halt and cancel the remainder of the motion. |
| 277 | if (rt_exec & EXEC_MOTION_CANCEL) { |
| 278 | // MOTION_CANCEL only occurs during a CYCLE, but a HOLD and SAFETY_DOOR may been initiated beforehand |
| 279 | // to hold the CYCLE. Motion cancel is valid for a single planner block motion only, while jog cancel |
| 280 | // will handle and clear multiple planner block motions. |
| 281 | if (!(sys.state & STATE_JOG)) { sys.suspend |= SUSPEND_MOTION_CANCEL; } // NOTE: State is STATE_CYCLE. |
| 282 | } |
| 283 | |
| 284 | // Execute a feed hold with deceleration, if required. Then, suspend system. |
| 285 | if (rt_exec & EXEC_FEED_HOLD) { |
| 286 | // Block SAFETY_DOOR, JOG, and SLEEP states from changing to HOLD state. |
| 287 | if (!(sys.state & (STATE_SAFETY_DOOR | STATE_JOG | STATE_SLEEP))) { sys.state = STATE_HOLD; } |
| 288 | } |
| 289 | |
| 290 | // Execute a safety door stop with a feed hold and disable spindle/coolant. |
| 291 | // NOTE: Safety door differs from feed holds by stopping everything no matter state, disables powered |
| 292 | // devices (spindle/coolant), and blocks resuming until switch is re-engaged. |
| 293 | if (rt_exec & EXEC_SAFETY_DOOR) { |
| 294 | report_feedback_message(MESSAGE_SAFETY_DOOR_AJAR); |
| 295 | // If jogging, block safety door methods until jog cancel is complete. Just flag that it happened. |
| 296 | if (!(sys.suspend & SUSPEND_JOG_CANCEL)) { |
| 297 | // Check if the safety re-opened during a restore parking motion only. Ignore if |
| 298 | // already retracting, parked or in sleep state. |
| 299 | if (sys.state == STATE_SAFETY_DOOR) { |
| 300 | if (sys.suspend & SUSPEND_INITIATE_RESTORE) { // Actively restoring |
| 301 | #ifdef PARKING_ENABLE |
| 302 | // Set hold and reset appropriate control flags to restart parking sequence. |
| 303 | if (sys.step_control & STEP_CONTROL_EXECUTE_SYS_MOTION) { |
| 304 | st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration. |
| 305 | sys.step_control = (STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION); |
| 306 | sys.suspend &= ~(SUSPEND_HOLD_COMPLETE); |
| 307 | } // else NO_MOTION is active. |
| 308 | #endif |
| 309 | sys.suspend &= ~(SUSPEND_RETRACT_COMPLETE | SUSPEND_INITIATE_RESTORE | SUSPEND_RESTORE_COMPLETE); |
| 310 | sys.suspend |= SUSPEND_RESTART_RETRACT; |
| 311 | } |
| 312 | } |
| 313 | if (sys.state != STATE_SLEEP) { sys.state = STATE_SAFETY_DOOR; } |
| 314 | } |
| 315 | // NOTE: This flag doesn't change when the door closes, unlike sys.state. Ensures any parking motions |
| 316 | // are executed if the door switch closes and the state returns to HOLD. |
| 317 | sys.suspend |= SUSPEND_SAFETY_DOOR_AJAR; |
| 318 | } |
| 319 | |
| 320 | } |
| 321 | |
| 322 | if (rt_exec & EXEC_SLEEP) { |
| 323 | if (sys.state == STATE_ALARM) { sys.suspend |= (SUSPEND_RETRACT_COMPLETE|SUSPEND_HOLD_COMPLETE); } |
| 324 | sys.state = STATE_SLEEP; |
| 325 | } |
| 326 | |
| 327 | system_clear_exec_state_flag((EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR | EXEC_SLEEP)); |
| 328 | } |
| 329 | |
| 330 | // Execute a cycle start by starting the stepper interrupt to begin executing the blocks in queue. |
| 331 | if (rt_exec & EXEC_CYCLE_START) { |
| 332 | // Block if called at same time as the hold commands: feed hold, motion cancel, and safety door. |
| 333 | // Ensures auto-cycle-start doesn't resume a hold without an explicit user-input. |
| 334 | if (!(rt_exec & (EXEC_FEED_HOLD | EXEC_MOTION_CANCEL | EXEC_SAFETY_DOOR))) { |
| 335 | // Resume door state when parking motion has retracted and door has been closed. |
| 336 | if ((sys.state == STATE_SAFETY_DOOR) && !(sys.suspend & SUSPEND_SAFETY_DOOR_AJAR)) { |
| 337 | if (sys.suspend & SUSPEND_RESTORE_COMPLETE) { |
| 338 | sys.state = STATE_IDLE; // Set to IDLE to immediately resume the cycle. |
| 339 | } else if (sys.suspend & SUSPEND_RETRACT_COMPLETE) { |
| 340 | // Flag to re-energize powered components and restore original position, if disabled by SAFETY_DOOR. |
| 341 | // NOTE: For a safety door to resume, the switch must be closed, as indicated by HOLD state, and |
| 342 | // the retraction execution is complete, which implies the initial feed hold is not active. To |
| 343 | // restore normal operation, the restore procedures must be initiated by the following flag. Once, |
| 344 | // they are complete, it will call CYCLE_START automatically to resume and exit the suspend. |
| 345 | sys.suspend |= SUSPEND_INITIATE_RESTORE; |
| 346 | } |
| 347 | } |
| 348 | // Cycle start only when IDLE or when a hold is complete and ready to resume. |
| 349 | if ((sys.state == STATE_IDLE) || ((sys.state & STATE_HOLD) && (sys.suspend & SUSPEND_HOLD_COMPLETE))) { |
| 350 | if (sys.state == STATE_HOLD && sys.spindle_stop_ovr) { |
| 351 | sys.spindle_stop_ovr |= SPINDLE_STOP_OVR_RESTORE_CYCLE; // Set to restore in suspend routine and cycle start after. |
| 352 | } else { |
| 353 | // Start cycle only if queued motions exist in planner buffer and the motion is not canceled. |
| 354 | sys.step_control = STEP_CONTROL_NORMAL_OP; // Restore step control to normal operation |
| 355 | if (plan_get_current_block() && bit_isfalse(sys.suspend,SUSPEND_MOTION_CANCEL)) { |
| 356 | sys.suspend = SUSPEND_DISABLE; // Break suspend state. |
| 357 | sys.state = STATE_CYCLE; |
| 358 | st_prep_buffer(); // Initialize step segment buffer before beginning cycle. |
| 359 | st_wake_up(); |
| 360 | } else { // Otherwise, do nothing. Set and resume IDLE state. |
| 361 | sys.suspend = SUSPEND_DISABLE; // Break suspend state. |
| 362 | sys.state = STATE_IDLE; |
| 363 | } |
| 364 | } |
| 365 | } |
| 366 | } |
| 367 | system_clear_exec_state_flag(EXEC_CYCLE_START); |
| 368 | } |
| 369 | |
| 370 | if (rt_exec & EXEC_CYCLE_STOP) { |
| 371 | // Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by |
| 372 | // realtime command execution in the main program, ensuring that the planner re-plans safely. |
| 373 | // NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper |
| 374 | // cycle reinitializations. The stepper path should continue exactly as if nothing has happened. |
| 375 | // NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes. |
| 376 | if ((sys.state & (STATE_HOLD|STATE_SAFETY_DOOR|STATE_SLEEP)) && !(sys.soft_limit) && !(sys.suspend & SUSPEND_JOG_CANCEL)) { |
| 377 | // Hold complete. Set to indicate ready to resume. Remain in HOLD or DOOR states until user |
| 378 | // has issued a resume command or reset. |
| 379 | plan_cycle_reinitialize(); |
| 380 | if (sys.step_control & STEP_CONTROL_EXECUTE_HOLD) { sys.suspend |= SUSPEND_HOLD_COMPLETE; } |
| 381 | bit_false(sys.step_control,(STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION)); |
| 382 | } else { |
| 383 | // Motion complete. Includes CYCLE/JOG/HOMING states and jog cancel/motion cancel/soft limit events. |
| 384 | // NOTE: Motion and jog cancel both immediately return to idle after the hold completes. |
| 385 | if (sys.suspend & SUSPEND_JOG_CANCEL) { // For jog cancel, flush buffers and sync positions. |
| 386 | sys.step_control = STEP_CONTROL_NORMAL_OP; |
| 387 | plan_reset(); |
| 388 | st_reset(); |
| 389 | gc_sync_position(); |
| 390 | plan_sync_position(); |
| 391 | } |
| 392 | if (sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) { // Only occurs when safety door opens during jog. |
| 393 | sys.suspend &= ~(SUSPEND_JOG_CANCEL); |
| 394 | sys.suspend |= SUSPEND_HOLD_COMPLETE; |
| 395 | sys.state = STATE_SAFETY_DOOR; |
| 396 | } else { |
| 397 | sys.suspend = SUSPEND_DISABLE; |
| 398 | sys.state = STATE_IDLE; |
| 399 | } |
| 400 | } |
| 401 | system_clear_exec_state_flag(EXEC_CYCLE_STOP); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | // Execute overrides. |
| 406 | rt_exec = sys_rt_exec_motion_override; // Copy volatile sys_rt_exec_motion_override |
| 407 | if (rt_exec) { |
| 408 | system_clear_exec_motion_overrides(); // Clear all motion override flags. |
| 409 | |
| 410 | uint8_t new_f_override = sys.f_override; |
| 411 | if (rt_exec & EXEC_FEED_OVR_RESET) { new_f_override = DEFAULT_FEED_OVERRIDE; } |
| 412 | if (rt_exec & EXEC_FEED_OVR_COARSE_PLUS) { new_f_override += FEED_OVERRIDE_COARSE_INCREMENT; } |
| 413 | if (rt_exec & EXEC_FEED_OVR_COARSE_MINUS) { new_f_override -= FEED_OVERRIDE_COARSE_INCREMENT; } |
| 414 | if (rt_exec & EXEC_FEED_OVR_FINE_PLUS) { new_f_override += FEED_OVERRIDE_FINE_INCREMENT; } |
| 415 | if (rt_exec & EXEC_FEED_OVR_FINE_MINUS) { new_f_override -= FEED_OVERRIDE_FINE_INCREMENT; } |
| 416 | new_f_override = min(new_f_override,MAX_FEED_RATE_OVERRIDE); |
| 417 | new_f_override = max(new_f_override,MIN_FEED_RATE_OVERRIDE); |
| 418 | |
| 419 | uint8_t new_r_override = sys.r_override; |
| 420 | if (rt_exec & EXEC_RAPID_OVR_RESET) { new_r_override = DEFAULT_RAPID_OVERRIDE; } |
| 421 | if (rt_exec & EXEC_RAPID_OVR_MEDIUM) { new_r_override = RAPID_OVERRIDE_MEDIUM; } |
| 422 | if (rt_exec & EXEC_RAPID_OVR_LOW) { new_r_override = RAPID_OVERRIDE_LOW; } |
| 423 | |
| 424 | if ((new_f_override != sys.f_override) || (new_r_override != sys.r_override)) { |
| 425 | sys.f_override = new_f_override; |
| 426 | sys.r_override = new_r_override; |
| 427 | sys.report_ovr_counter = 0; // Set to report change immediately |
| 428 | plan_update_velocity_profile_parameters(); |
| 429 | plan_cycle_reinitialize(); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | rt_exec = sys_rt_exec_accessory_override; |
| 434 | if (rt_exec) { |
| 435 | system_clear_exec_accessory_overrides(); // Clear all accessory override flags. |
| 436 | |
| 437 | // NOTE: Unlike motion overrides, spindle overrides do not require a planner reinitialization. |
| 438 | uint8_t last_s_override = sys.spindle_speed_ovr; |
| 439 | if (rt_exec & EXEC_SPINDLE_OVR_RESET) { last_s_override = DEFAULT_SPINDLE_SPEED_OVERRIDE; } |
| 440 | if (rt_exec & EXEC_SPINDLE_OVR_COARSE_PLUS) { last_s_override += SPINDLE_OVERRIDE_COARSE_INCREMENT; } |
| 441 | if (rt_exec & EXEC_SPINDLE_OVR_COARSE_MINUS) { last_s_override -= SPINDLE_OVERRIDE_COARSE_INCREMENT; } |
| 442 | if (rt_exec & EXEC_SPINDLE_OVR_FINE_PLUS) { last_s_override += SPINDLE_OVERRIDE_FINE_INCREMENT; } |
| 443 | if (rt_exec & EXEC_SPINDLE_OVR_FINE_MINUS) { last_s_override -= SPINDLE_OVERRIDE_FINE_INCREMENT; } |
| 444 | last_s_override = min(last_s_override,MAX_SPINDLE_SPEED_OVERRIDE); |
| 445 | last_s_override = max(last_s_override,MIN_SPINDLE_SPEED_OVERRIDE); |
| 446 | |
| 447 | if (last_s_override != sys.spindle_speed_ovr) { |
| 448 | sys.spindle_speed_ovr = last_s_override; |
| 449 | // NOTE: Spindle speed overrides during HOLD state are taken care of by suspend function. |
| 450 | if (sys.state == STATE_IDLE) { spindle_set_state(gc_state.modal.spindle, gc_state.spindle_speed); } |
| 451 | else { bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); } |
| 452 | sys.report_ovr_counter = 0; // Set to report change immediately |
| 453 | } |
| 454 | |
| 455 | if (rt_exec & EXEC_SPINDLE_OVR_STOP) { |
| 456 | // Spindle stop override allowed only while in HOLD state. |
| 457 | // NOTE: Report counters are set in spindle_set_state() when spindle stop is executed. |
| 458 | if (sys.state == STATE_HOLD) { |
| 459 | if (!(sys.spindle_stop_ovr)) { sys.spindle_stop_ovr = SPINDLE_STOP_OVR_INITIATE; } |
| 460 | else if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_ENABLED) { sys.spindle_stop_ovr |= SPINDLE_STOP_OVR_RESTORE; } |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | // NOTE: Since coolant state always performs a planner sync whenever it changes, the current |
| 465 | // run state can be determined by checking the parser state. |
| 466 | // NOTE: Coolant overrides only operate during IDLE, CYCLE, HOLD, and JOG states. Ignored otherwise. |
| 467 | if (rt_exec & (EXEC_COOLANT_FLOOD_OVR_TOGGLE | EXEC_COOLANT_MIST_OVR_TOGGLE)) { |
| 468 | if ((sys.state == STATE_IDLE) || (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_JOG))) { |
| 469 | uint8_t coolant_state = gc_state.modal.coolant; |
| 470 | #ifdef ENABLE_M7 |
| 471 | if (rt_exec & EXEC_COOLANT_MIST_OVR_TOGGLE) { |
| 472 | if (coolant_state & COOLANT_MIST_ENABLE) { bit_false(coolant_state,COOLANT_MIST_ENABLE); } |
| 473 | else { coolant_state |= COOLANT_MIST_ENABLE; } |
| 474 | } |
| 475 | if (rt_exec & EXEC_COOLANT_FLOOD_OVR_TOGGLE) { |
| 476 | if (coolant_state & COOLANT_FLOOD_ENABLE) { bit_false(coolant_state,COOLANT_FLOOD_ENABLE); } |
| 477 | else { coolant_state |= COOLANT_FLOOD_ENABLE; } |
| 478 | } |
| 479 | #else |
| 480 | if (coolant_state & COOLANT_FLOOD_ENABLE) { bit_false(coolant_state,COOLANT_FLOOD_ENABLE); } |
| 481 | else { coolant_state |= COOLANT_FLOOD_ENABLE; } |
| 482 | #endif |
| 483 | coolant_set_state(coolant_state); // Report counter set in coolant_set_state(). |
| 484 | gc_state.modal.coolant = coolant_state; |
| 485 | } |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | #ifdef DEBUG |
| 490 | if (sys_rt_exec_debug) { |
| 491 | report_realtime_debug(); |
| 492 | sys_rt_exec_debug = 0; |
| 493 | } |
| 494 | #endif |
| 495 | |
| 496 | // Reload step segment buffer |
| 497 | if (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_SAFETY_DOOR | STATE_HOMING | STATE_SLEEP| STATE_JOG)) { |
| 498 | st_prep_buffer(); |
| 499 | } |
| 500 | |
| 501 | } |
| 502 | |
| 503 | |
| 504 | // Handles Grbl system suspend procedures, such as feed hold, safety door, and parking motion. |
| 505 | // The system will enter this loop, create local variables for suspend tasks, and return to |
| 506 | // whatever function that invoked the suspend, such that Grbl resumes normal operation. |
| 507 | // This function is written in a way to promote custom parking motions. Simply use this as a |
| 508 | // template |
| 509 | static void protocol_exec_rt_suspend() |
| 510 | { |
| 511 | #ifdef PARKING_ENABLE |
| 512 | // Declare and initialize parking local variables |
| 513 | float restore_target[N_AXIS]; |
| 514 | float parking_target[N_AXIS]; |
| 515 | float retract_waypoint = PARKING_PULLOUT_INCREMENT; |
| 516 | plan_line_data_t plan_data; |
| 517 | plan_line_data_t *pl_data = &plan_data; |
| 518 | memset(pl_data,0,sizeof(plan_line_data_t)); |
| 519 | pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE); |
| 520 | #ifdef USE_LINE_NUMBERS |
| 521 | pl_data->line_number = PARKING_MOTION_LINE_NUMBER; |
| 522 | #endif |
| 523 | #endif |
| 524 | |
| 525 | plan_block_t *block = plan_get_current_block(); |
| 526 | uint8_t restore_condition; |
| 527 | #ifdef VARIABLE_SPINDLE |
| 528 | float restore_spindle_speed; |
| 529 | if (block == NULL) { |
| 530 | restore_condition = (gc_state.modal.spindle | gc_state.modal.coolant); |
| 531 | restore_spindle_speed = gc_state.spindle_speed; |
| 532 | } else { |
| 533 | restore_condition = (block->condition & PL_COND_SPINDLE_MASK) | coolant_get_state(); |
| 534 | restore_spindle_speed = block->spindle_speed; |
| 535 | } |
| 536 | #ifdef DISABLE_LASER_DURING_HOLD |
| 537 | if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) { |
| 538 | system_set_exec_accessory_override_flag(EXEC_SPINDLE_OVR_STOP); |
| 539 | } |
| 540 | #endif |
| 541 | #else |
| 542 | if (block == NULL) { restore_condition = (gc_state.modal.spindle | gc_state.modal.coolant); } |
| 543 | else { restore_condition = (block->condition & PL_COND_SPINDLE_MASK) | coolant_get_state(); } |
| 544 | #endif |
| 545 | |
| 546 | while (sys.suspend) { |
| 547 | |
| 548 | if (sys.abort) { return; } |
| 549 | |
| 550 | // Block until initial hold is complete and the machine has stopped motion. |
| 551 | if (sys.suspend & SUSPEND_HOLD_COMPLETE) { |
| 552 | |
| 553 | // Parking manager. Handles de/re-energizing, switch state checks, and parking motions for |
| 554 | // the safety door and sleep states. |
| 555 | if (sys.state & (STATE_SAFETY_DOOR | STATE_SLEEP)) { |
| 556 | |
| 557 | // Handles retraction motions and de-energizing. |
| 558 | if (bit_isfalse(sys.suspend,SUSPEND_RETRACT_COMPLETE)) { |
| 559 | |
| 560 | // Ensure any prior spindle stop override is disabled at start of safety door routine. |
| 561 | sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; |
| 562 | |
| 563 | #ifndef PARKING_ENABLE |
| 564 | |
| 565 | spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize |
| 566 | coolant_set_state(COOLANT_DISABLE); // De-energize |
| 567 | |
| 568 | #else |
| 569 | |
| 570 | // Get current position and store restore location and spindle retract waypoint. |
| 571 | system_convert_array_steps_to_mpos(parking_target,sys_position); |
| 572 | if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { |
| 573 | memcpy(restore_target,parking_target,sizeof(parking_target)); |
| 574 | retract_waypoint += restore_target[PARKING_AXIS]; |
| 575 | retract_waypoint = min(retract_waypoint,PARKING_TARGET); |
| 576 | } |
| 577 | |
| 578 | // Execute slow pull-out parking retract motion. Parking requires homing enabled, the |
| 579 | // current location not exceeding the parking target location, and laser mode disabled. |
| 580 | // NOTE: State is will remain DOOR, until the de-energizing and retract is complete. |
| 581 | #ifdef ENABLE_PARKING_OVERRIDE_CONTROL |
| 582 | if ((bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) && |
| 583 | (parking_target[PARKING_AXIS] < PARKING_TARGET) && |
| 584 | bit_isfalse(settings.flags,BITFLAG_LASER_MODE) && |
| 585 | (sys.override_ctrl == OVERRIDE_PARKING_MOTION)) { |
| 586 | #else |
| 587 | if ((bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) && |
| 588 | (parking_target[PARKING_AXIS] < PARKING_TARGET) && |
| 589 | bit_isfalse(settings.flags,BITFLAG_LASER_MODE)) { |
| 590 | #endif |
| 591 | // Retract spindle by pullout distance. Ensure retraction motion moves away from |
| 592 | // the workpiece and waypoint motion doesn't exceed the parking target location. |
| 593 | if (parking_target[PARKING_AXIS] < retract_waypoint) { |
| 594 | parking_target[PARKING_AXIS] = retract_waypoint; |
| 595 | pl_data->feed_rate = PARKING_PULLOUT_RATE; |
| 596 | pl_data->condition |= (restore_condition & PL_COND_ACCESSORY_MASK); // Retain accessory state |
| 597 | pl_data->spindle_speed = restore_spindle_speed; |
| 598 | mc_parking_motion(parking_target, pl_data); |
| 599 | } |
| 600 | |
| 601 | // NOTE: Clear accessory state after retract and after an aborted restore motion. |
| 602 | pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE); |
| 603 | pl_data->spindle_speed = 0.0; |
| 604 | spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize |
| 605 | coolant_set_state(COOLANT_DISABLE); // De-energize |
| 606 | |
| 607 | // Execute fast parking retract motion to parking target location. |
| 608 | if (parking_target[PARKING_AXIS] < PARKING_TARGET) { |
| 609 | parking_target[PARKING_AXIS] = PARKING_TARGET; |
| 610 | pl_data->feed_rate = PARKING_RATE; |
| 611 | mc_parking_motion(parking_target, pl_data); |
| 612 | } |
| 613 | |
| 614 | } else { |
| 615 | |
| 616 | // Parking motion not possible. Just disable the spindle and coolant. |
| 617 | // NOTE: Laser mode does not start a parking motion to ensure the laser stops immediately. |
| 618 | spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize |
| 619 | coolant_set_state(COOLANT_DISABLE); // De-energize |
| 620 | |
| 621 | } |
| 622 | |
| 623 | #endif |
| 624 | |
| 625 | sys.suspend &= ~(SUSPEND_RESTART_RETRACT); |
| 626 | sys.suspend |= SUSPEND_RETRACT_COMPLETE; |
| 627 | |
| 628 | } else { |
| 629 | |
| 630 | |
| 631 | if (sys.state == STATE_SLEEP) { |
| 632 | report_feedback_message(MESSAGE_SLEEP_MODE); |
| 633 | // Spindle and coolant should already be stopped, but do it again just to be sure. |
| 634 | spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize |
| 635 | coolant_set_state(COOLANT_DISABLE); // De-energize |
| 636 | st_go_idle(); // Disable steppers |
| 637 | while (!(sys.abort)) { protocol_exec_rt_system(); } // Do nothing until reset. |
| 638 | return; // Abort received. Return to re-initialize. |
| 639 | } |
| 640 | |
| 641 | // Allows resuming from parking/safety door. Actively checks if safety door is closed and ready to resume. |
| 642 | if (sys.state == STATE_SAFETY_DOOR) { |
| 643 | if (!(system_check_safety_door_ajar())) { |
| 644 | sys.suspend &= ~(SUSPEND_SAFETY_DOOR_AJAR); // Reset door ajar flag to denote ready to resume. |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | // Handles parking restore and safety door resume. |
| 649 | if (sys.suspend & SUSPEND_INITIATE_RESTORE) { |
| 650 | |
| 651 | #ifdef PARKING_ENABLE |
| 652 | // Execute fast restore motion to the pull-out position. Parking requires homing enabled. |
| 653 | // NOTE: State is will remain DOOR, until the de-energizing and retract is complete. |
| 654 | #ifdef ENABLE_PARKING_OVERRIDE_CONTROL |
| 655 | if (((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) && |
| 656 | (sys.override_ctrl == OVERRIDE_PARKING_MOTION)) { |
| 657 | #else |
| 658 | if ((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) { |
| 659 | #endif |
| 660 | // Check to ensure the motion doesn't move below pull-out position. |
| 661 | if (parking_target[PARKING_AXIS] <= PARKING_TARGET) { |
| 662 | parking_target[PARKING_AXIS] = retract_waypoint; |
| 663 | pl_data->feed_rate = PARKING_RATE; |
| 664 | mc_parking_motion(parking_target, pl_data); |
| 665 | } |
| 666 | } |
| 667 | #endif |
| 668 | |
| 669 | // Delayed Tasks: Restart spindle and coolant, delay to power-up, then resume cycle. |
| 670 | if (gc_state.modal.spindle != SPINDLE_DISABLE) { |
| 671 | // Block if safety door re-opened during prior restore actions. |
| 672 | if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { |
| 673 | if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) { |
| 674 | // When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts. |
| 675 | bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); |
| 676 | } else { |
| 677 | spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed); |
| 678 | delay_sec(SAFETY_DOOR_SPINDLE_DELAY, DELAY_MODE_SYS_SUSPEND); |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | if (gc_state.modal.coolant != COOLANT_DISABLE) { |
| 683 | // Block if safety door re-opened during prior restore actions. |
| 684 | if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { |
| 685 | // NOTE: Laser mode will honor this delay. An exhaust system is often controlled by this pin. |
| 686 | coolant_set_state((restore_condition & (PL_COND_FLAG_COOLANT_FLOOD | PL_COND_FLAG_COOLANT_MIST))); |
| 687 | delay_sec(SAFETY_DOOR_COOLANT_DELAY, DELAY_MODE_SYS_SUSPEND); |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | #ifdef PARKING_ENABLE |
| 692 | // Execute slow plunge motion from pull-out position to resume position. |
| 693 | #ifdef ENABLE_PARKING_OVERRIDE_CONTROL |
| 694 | if (((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) && |
| 695 | (sys.override_ctrl == OVERRIDE_PARKING_MOTION)) { |
| 696 | #else |
| 697 | if ((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) { |
| 698 | #endif |
| 699 | // Block if safety door re-opened during prior restore actions. |
| 700 | if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { |
| 701 | // Regardless if the retract parking motion was a valid/safe motion or not, the |
| 702 | // restore parking motion should logically be valid, either by returning to the |
| 703 | // original position through valid machine space or by not moving at all. |
| 704 | pl_data->feed_rate = PARKING_PULLOUT_RATE; |
| 705 | pl_data->condition |= (restore_condition & PL_COND_ACCESSORY_MASK); // Restore accessory state |
| 706 | pl_data->spindle_speed = restore_spindle_speed; |
| 707 | mc_parking_motion(restore_target, pl_data); |
| 708 | } |
| 709 | } |
| 710 | #endif |
| 711 | |
| 712 | if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) { |
| 713 | sys.suspend |= SUSPEND_RESTORE_COMPLETE; |
| 714 | system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program. |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | } |
| 719 | |
| 720 | |
| 721 | } else { |
| 722 | |
| 723 | // Feed hold manager. Controls spindle stop override states. |
| 724 | // NOTE: Hold ensured as completed by condition check at the beginning of suspend routine. |
| 725 | if (sys.spindle_stop_ovr) { |
| 726 | // Handles beginning of spindle stop |
| 727 | if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_INITIATE) { |
| 728 | if (gc_state.modal.spindle != SPINDLE_DISABLE) { |
| 729 | spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize |
| 730 | sys.spindle_stop_ovr = SPINDLE_STOP_OVR_ENABLED; // Set stop override state to enabled, if de-energized. |
| 731 | } else { |
| 732 | sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; // Clear stop override state |
| 733 | } |
| 734 | // Handles restoring of spindle state |
| 735 | } else if (sys.spindle_stop_ovr & (SPINDLE_STOP_OVR_RESTORE | SPINDLE_STOP_OVR_RESTORE_CYCLE)) { |
| 736 | if (gc_state.modal.spindle != SPINDLE_DISABLE) { |
| 737 | report_feedback_message(MESSAGE_SPINDLE_RESTORE); |
| 738 | if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) { |
| 739 | // When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts. |
| 740 | bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); |
| 741 | } else { |
| 742 | spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed); |
| 743 | } |
| 744 | } |
| 745 | if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_RESTORE_CYCLE) { |
| 746 | system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program. |
| 747 | } |
| 748 | sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; // Clear stop override state |
| 749 | } |
| 750 | } else { |
| 751 | // Handles spindle state during hold. NOTE: Spindle speed overrides may be altered during hold state. |
| 752 | // NOTE: STEP_CONTROL_UPDATE_SPINDLE_PWM is automatically reset upon resume in step generator. |
| 753 | if (bit_istrue(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM)) { |
| 754 | spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed); |
| 755 | bit_false(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM); |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | protocol_exec_rt_system(); |
| 763 | |
| 764 | } |
| 765 | } |