blob: 55e6c406acea5ced99beffe145f97b60fcbb83e7 [file] [log] [blame]
/*
system.c - Handles system level commands and real-time processes
Part of Grbl
Copyright (c) 2014-2016 Sungeun K. Jeon for Gnea Research LLC
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
void system_init()
{
CONTROL_DDR &= ~(CONTROL_MASK); // Configure as input pins
#ifdef DISABLE_CONTROL_PIN_PULL_UP
CONTROL_PORT &= ~(CONTROL_MASK); // Normal low operation. Requires external pull-down.
#else
CONTROL_PORT |= CONTROL_MASK; // Enable internal pull-up resistors. Normal high operation.
#endif
CONTROL_PCMSK |= CONTROL_MASK; // Enable specific pins of the Pin Change Interrupt
PCICR |= (1 << CONTROL_INT); // Enable Pin Change Interrupt
}
// Returns control pin state as a uint8 bitfield. Each bit indicates the input pin state, where
// triggered is 1 and not triggered is 0. Invert mask is applied. Bitfield organization is
// defined by the CONTROL_PIN_INDEX in the header file.
uint8_t system_control_get_state()
{
uint8_t control_state = 0;
uint8_t pin = (CONTROL_PIN & CONTROL_MASK) ^ CONTROL_MASK;
#ifdef INVERT_CONTROL_PIN_MASK
pin ^= INVERT_CONTROL_PIN_MASK;
#endif
if (pin) {
#ifdef ENABLE_SAFETY_DOOR_INPUT_PIN
if (bit_istrue(pin,(1<<CONTROL_SAFETY_DOOR_BIT))) { control_state |= CONTROL_PIN_INDEX_SAFETY_DOOR; }
#else
if (bit_istrue(pin,(1<<CONTROL_FEED_HOLD_BIT))) { control_state |= CONTROL_PIN_INDEX_FEED_HOLD; }
#endif
if (bit_istrue(pin,(1<<CONTROL_RESET_BIT))) { control_state |= CONTROL_PIN_INDEX_RESET; }
if (bit_istrue(pin,(1<<CONTROL_CYCLE_START_BIT))) { control_state |= CONTROL_PIN_INDEX_CYCLE_START; }
}
return(control_state);
}
// Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets
// only the realtime command execute variable to have the main program execute these when
// its ready. This works exactly like the character-based realtime commands when picked off
// directly from the incoming serial data stream.
ISR(CONTROL_INT_vect)
{
uint8_t pin = system_control_get_state();
if (pin) {
if (bit_istrue(pin,CONTROL_PIN_INDEX_RESET)) {
mc_reset();
}
if (bit_istrue(pin,CONTROL_PIN_INDEX_CYCLE_START)) {
bit_true(sys_rt_exec_state, EXEC_CYCLE_START);
}
#ifndef ENABLE_SAFETY_DOOR_INPUT_PIN
if (bit_istrue(pin,CONTROL_PIN_INDEX_FEED_HOLD)) {
bit_true(sys_rt_exec_state, EXEC_FEED_HOLD);
#else
if (bit_istrue(pin,CONTROL_PIN_INDEX_SAFETY_DOOR)) {
bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR);
#endif
}
}
}
// Returns if safety door is ajar(T) or closed(F), based on pin state.
uint8_t system_check_safety_door_ajar()
{
#ifdef ENABLE_SAFETY_DOOR_INPUT_PIN
return(system_control_get_state() & CONTROL_PIN_INDEX_SAFETY_DOOR);
#else
return(false); // Input pin not enabled, so just return that it's closed.
#endif
}
// Executes user startup script, if stored.
void system_execute_startup(char *line)
{
uint8_t n;
for (n=0; n < N_STARTUP_LINE; n++) {
if (!(settings_read_startup_line(n, line))) {
line[0] = 0;
report_execute_startup_message(line,STATUS_SETTING_READ_FAIL);
} else {
if (line[0] != 0) {
uint8_t status_code = gc_execute_line(line);
report_execute_startup_message(line,status_code);
}
}
}
}
// Directs and executes one line of formatted input from protocol_process. While mostly
// incoming streaming g-code blocks, this also executes Grbl internal commands, such as
// settings, initiating the homing cycle, and toggling switch states. This differs from
// the realtime command module by being susceptible to when Grbl is ready to execute the
// next line during a cycle, so for switches like block delete, the switch only effects
// the lines that are processed afterward, not necessarily real-time during a cycle,
// since there are motions already stored in the buffer. However, this 'lag' should not
// be an issue, since these commands are not typically used during a cycle.
uint8_t system_execute_line(char *line)
{
uint8_t char_counter = 1;
uint8_t helper_var = 0; // Helper variable
float parameter, value;
switch( line[char_counter] ) {
case 0 : report_grbl_help(); break;
case 'J' : // Jogging
// Execute only if in IDLE or JOG states.
if (sys.state != STATE_IDLE && sys.state != STATE_JOG) { return(STATUS_IDLE_ERROR); }
if(line[2] != '=') { return(STATUS_INVALID_STATEMENT); }
return(gc_execute_line(line)); // NOTE: $J= is ignored inside g-code parser and used to detect jog motions.
break;
case '$': case 'G': case 'C': case 'X':
if ( line[2] != 0 ) { return(STATUS_INVALID_STATEMENT); }
switch( line[1] ) {
case '$' : // Prints Grbl settings
if ( sys.state & (STATE_CYCLE | STATE_HOLD) ) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print.
else { report_grbl_settings(); }
break;
case 'G' : // Prints gcode parser state
// TODO: Move this to realtime commands for GUIs to request this data during suspend-state.
report_gcode_modes();
break;
case 'C' : // Set check g-code mode [IDLE/CHECK]
// Perform reset when toggling off. Check g-code mode should only work if Grbl
// is idle and ready, regardless of alarm locks. This is mainly to keep things
// simple and consistent.
if ( sys.state == STATE_CHECK_MODE ) {
mc_reset();
report_feedback_message(MESSAGE_DISABLED);
} else {
if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode.
sys.state = STATE_CHECK_MODE;
report_feedback_message(MESSAGE_ENABLED);
}
break;
case 'X' : // Disable alarm lock [ALARM]
if (sys.state == STATE_ALARM) {
// Block if safety door is ajar.
if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); }
report_feedback_message(MESSAGE_ALARM_UNLOCK);
sys.state = STATE_IDLE;
// Don't run startup script. Prevents stored moves in startup from causing accidents.
} // Otherwise, no effect.
break;
}
break;
default :
// Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing)
if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); }
switch( line[1] ) {
case '#' : // Print Grbl NGC parameters
if ( line[2] != 0 ) { return(STATUS_INVALID_STATEMENT); }
else { report_ngc_parameters(); }
break;
case 'H' : // Perform homing cycle [IDLE/ALARM]
if (bit_isfalse(settings.flags,BITFLAG_HOMING_ENABLE)) {return(STATUS_SETTING_DISABLED); }
if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); } // Block if safety door is ajar.
sys.state = STATE_HOMING; // Set system state variable
if (line[2] == 0) {
mc_homing_cycle(HOMING_CYCLE_ALL);
#ifdef HOMING_SINGLE_AXIS_COMMANDS
} else if (line[3] == 0) {
switch (line[2]) {
case 'X': mc_homing_cycle(HOMING_CYCLE_X); break;
case 'Y': mc_homing_cycle(HOMING_CYCLE_Y); break;
case 'Z': mc_homing_cycle(HOMING_CYCLE_Z); break;
default: return(STATUS_INVALID_STATEMENT);
}
#endif
} else { return(STATUS_INVALID_STATEMENT); }
if (!sys.abort) { // Execute startup scripts after successful homing.
sys.state = STATE_IDLE; // Set to IDLE when complete.
st_go_idle(); // Set steppers to the settings idle state before returning.
if (line[2] == 0) { system_execute_startup(line); }
}
break;
case 'S' : // Puts Grbl to sleep [IDLE/ALARM]
if ((line[2] != 'L') || (line[3] != 'P') || (line[4] != 0)) { return(STATUS_INVALID_STATEMENT); }
system_set_exec_state_flag(EXEC_SLEEP); // Set to execute sleep mode immediately
break;
case 'I' : // Print or store build info. [IDLE/ALARM]
if ( line[++char_counter] == 0 ) {
settings_read_build_info(line);
report_build_info(line);
#ifdef ENABLE_BUILD_INFO_WRITE_COMMAND
} else { // Store startup line [IDLE/ALARM]
if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
helper_var = char_counter; // Set helper variable as counter to start of user info line.
do {
line[char_counter-helper_var] = line[char_counter];
} while (line[char_counter++] != 0);
settings_store_build_info(line);
#endif
}
break;
case 'R' : // Restore defaults [IDLE/ALARM]
if ((line[2] != 'S') || (line[3] != 'T') || (line[4] != '=') || (line[6] != 0)) { return(STATUS_INVALID_STATEMENT); }
switch (line[5]) {
#ifdef ENABLE_RESTORE_EEPROM_DEFAULT_SETTINGS
case '$': settings_restore(SETTINGS_RESTORE_DEFAULTS); break;
#endif
#ifdef ENABLE_RESTORE_EEPROM_CLEAR_PARAMETERS
case '#': settings_restore(SETTINGS_RESTORE_PARAMETERS); break;
#endif
#ifdef ENABLE_RESTORE_EEPROM_WIPE_ALL
case '*': settings_restore(SETTINGS_RESTORE_ALL); break;
#endif
default: return(STATUS_INVALID_STATEMENT);
}
report_feedback_message(MESSAGE_RESTORE_DEFAULTS);
mc_reset(); // Force reset to ensure settings are initialized correctly.
break;
case 'N' : // Startup lines. [IDLE/ALARM]
if ( line[++char_counter] == 0 ) { // Print startup lines
for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) {
if (!(settings_read_startup_line(helper_var, line))) {
report_status_message(STATUS_SETTING_READ_FAIL);
} else {
report_startup_line(helper_var,line);
}
}
break;
} else { // Store startup line [IDLE Only] Prevents motion during ALARM.
if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle.
helper_var = true; // Set helper_var to flag storing method.
// No break. Continues into default: to read remaining command characters.
}
default : // Storing setting methods [IDLE/ALARM]
if(!read_float(line, &char_counter, &parameter)) { return(STATUS_BAD_NUMBER_FORMAT); }
if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
if (helper_var) { // Store startup line
// Prepare sending gcode block to gcode parser by shifting all characters
helper_var = char_counter; // Set helper variable as counter to start of gcode block
do {
line[char_counter-helper_var] = line[char_counter];
} while (line[char_counter++] != 0);
// Execute gcode block to ensure block is valid.
helper_var = gc_execute_line(line); // Set helper_var to returned status code.
if (helper_var) { return(helper_var); }
else {
helper_var = trunc(parameter); // Set helper_var to int value of parameter
settings_store_startup_line(helper_var,line);
}
} else { // Store global setting.
if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); }
if((line[char_counter] != 0) || (parameter > 255)) { return(STATUS_INVALID_STATEMENT); }
return(settings_store_global_setting((uint8_t)parameter, value));
}
}
}
return(STATUS_OK); // If '$' command makes it to here, then everything's ok.
}
void system_flag_wco_change()
{
#ifdef FORCE_BUFFER_SYNC_DURING_WCO_CHANGE
protocol_buffer_synchronize();
#endif
sys.report_wco_counter = 0;
}
// Returns machine position of axis 'idx'. Must be sent a 'step' array.
// NOTE: If motor steps and machine position are not in the same coordinate frame, this function
// serves as a central place to compute the transformation.
float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx)
{
float pos;
#ifdef COREXY
if (idx==X_AXIS) {
pos = (float)system_convert_corexy_to_x_axis_steps(steps) / settings.steps_per_mm[idx];
} else if (idx==Y_AXIS) {
pos = (float)system_convert_corexy_to_y_axis_steps(steps) / settings.steps_per_mm[idx];
} else {
pos = steps[idx]/settings.steps_per_mm[idx];
}
#else
pos = steps[idx]/settings.steps_per_mm[idx];
#endif
return(pos);
}
void system_convert_array_steps_to_mpos(float *position, int32_t *steps)
{
uint8_t idx;
for (idx=0; idx<N_AXIS; idx++) {
position[idx] = system_convert_axis_steps_to_mpos(steps, idx);
}
return;
}
// CoreXY calculation only. Returns x or y-axis "steps" based on CoreXY motor steps.
#ifdef COREXY
int32_t system_convert_corexy_to_x_axis_steps(int32_t *steps)
{
return( (steps[A_MOTOR] + steps[B_MOTOR])/2 );
}
int32_t system_convert_corexy_to_y_axis_steps(int32_t *steps)
{
return( (steps[A_MOTOR] - steps[B_MOTOR])/2 );
}
#endif
// Checks and reports if target array exceeds machine travel limits.
uint8_t system_check_travel_limits(float *target)
{
uint8_t idx;
for (idx=0; idx<N_AXIS; idx++) {
#ifdef HOMING_FORCE_SET_ORIGIN
// When homing forced set origin is enabled, soft limits checks need to account for directionality.
// NOTE: max_travel is stored as negative
if (bit_istrue(settings.homing_dir_mask,bit(idx))) {
if (target[idx] < 0 || target[idx] > -settings.max_travel[idx]) { return(true); }
} else {
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return(true); }
}
#else
// NOTE: max_travel is stored as negative
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return(true); }
#endif
}
return(false);
}
// Special handlers for setting and clearing Grbl's real-time execution flags.
void system_set_exec_state_flag(uint8_t mask) {
uint8_t sreg = SREG;
cli();
sys_rt_exec_state |= (mask);
SREG = sreg;
}
void system_clear_exec_state_flag(uint8_t mask) {
uint8_t sreg = SREG;
cli();
sys_rt_exec_state &= ~(mask);
SREG = sreg;
}
void system_set_exec_alarm(uint8_t code) {
uint8_t sreg = SREG;
cli();
sys_rt_exec_alarm = code;
SREG = sreg;
}
void system_clear_exec_alarm() {
uint8_t sreg = SREG;
cli();
sys_rt_exec_alarm = 0;
SREG = sreg;
}
void system_set_exec_motion_override_flag(uint8_t mask) {
uint8_t sreg = SREG;
cli();
sys_rt_exec_motion_override |= (mask);
SREG = sreg;
}
void system_set_exec_accessory_override_flag(uint8_t mask) {
uint8_t sreg = SREG;
cli();
sys_rt_exec_accessory_override |= (mask);
SREG = sreg;
}
void system_clear_exec_motion_overrides() {
uint8_t sreg = SREG;
cli();
sys_rt_exec_motion_override = 0;
SREG = sreg;
}
void system_clear_exec_accessory_overrides() {
uint8_t sreg = SREG;
cli();
sys_rt_exec_accessory_override = 0;
SREG = sreg;
}