| /* |
| system.c - Handles system level commands and real-time processes |
| Part of Grbl |
| |
| Copyright (c) 2014-2016 Sungeun K. Jeon for Gnea Research LLC |
| |
| Grbl is free software: you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation, either version 3 of the License, or |
| (at your option) any later version. |
| |
| Grbl is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with Grbl. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "grbl.h" |
| |
| |
| void system_init() |
| { |
| CONTROL_DDR &= ~(CONTROL_MASK); // Configure as input pins |
| #ifdef DISABLE_CONTROL_PIN_PULL_UP |
| CONTROL_PORT &= ~(CONTROL_MASK); // Normal low operation. Requires external pull-down. |
| #else |
| CONTROL_PORT |= CONTROL_MASK; // Enable internal pull-up resistors. Normal high operation. |
| #endif |
| CONTROL_PCMSK |= CONTROL_MASK; // Enable specific pins of the Pin Change Interrupt |
| PCICR |= (1 << CONTROL_INT); // Enable Pin Change Interrupt |
| } |
| |
| |
| // Returns control pin state as a uint8 bitfield. Each bit indicates the input pin state, where |
| // triggered is 1 and not triggered is 0. Invert mask is applied. Bitfield organization is |
| // defined by the CONTROL_PIN_INDEX in the header file. |
| uint8_t system_control_get_state() |
| { |
| uint8_t control_state = 0; |
| uint8_t pin = (CONTROL_PIN & CONTROL_MASK) ^ CONTROL_MASK; |
| #ifdef INVERT_CONTROL_PIN_MASK |
| pin ^= INVERT_CONTROL_PIN_MASK; |
| #endif |
| if (pin) { |
| #ifdef ENABLE_SAFETY_DOOR_INPUT_PIN |
| if (bit_istrue(pin,(1<<CONTROL_SAFETY_DOOR_BIT))) { control_state |= CONTROL_PIN_INDEX_SAFETY_DOOR; } |
| #else |
| if (bit_istrue(pin,(1<<CONTROL_FEED_HOLD_BIT))) { control_state |= CONTROL_PIN_INDEX_FEED_HOLD; } |
| #endif |
| if (bit_istrue(pin,(1<<CONTROL_RESET_BIT))) { control_state |= CONTROL_PIN_INDEX_RESET; } |
| if (bit_istrue(pin,(1<<CONTROL_CYCLE_START_BIT))) { control_state |= CONTROL_PIN_INDEX_CYCLE_START; } |
| } |
| return(control_state); |
| } |
| |
| |
| // Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets |
| // only the realtime command execute variable to have the main program execute these when |
| // its ready. This works exactly like the character-based realtime commands when picked off |
| // directly from the incoming serial data stream. |
| ISR(CONTROL_INT_vect) |
| { |
| uint8_t pin = system_control_get_state(); |
| if (pin) { |
| if (bit_istrue(pin,CONTROL_PIN_INDEX_RESET)) { |
| mc_reset(); |
| } |
| if (bit_istrue(pin,CONTROL_PIN_INDEX_CYCLE_START)) { |
| bit_true(sys_rt_exec_state, EXEC_CYCLE_START); |
| } |
| #ifndef ENABLE_SAFETY_DOOR_INPUT_PIN |
| if (bit_istrue(pin,CONTROL_PIN_INDEX_FEED_HOLD)) { |
| bit_true(sys_rt_exec_state, EXEC_FEED_HOLD); |
| #else |
| if (bit_istrue(pin,CONTROL_PIN_INDEX_SAFETY_DOOR)) { |
| bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR); |
| #endif |
| } |
| } |
| } |
| |
| |
| // Returns if safety door is ajar(T) or closed(F), based on pin state. |
| uint8_t system_check_safety_door_ajar() |
| { |
| #ifdef ENABLE_SAFETY_DOOR_INPUT_PIN |
| return(system_control_get_state() & CONTROL_PIN_INDEX_SAFETY_DOOR); |
| #else |
| return(false); // Input pin not enabled, so just return that it's closed. |
| #endif |
| } |
| |
| |
| // Executes user startup script, if stored. |
| void system_execute_startup(char *line) |
| { |
| uint8_t n; |
| for (n=0; n < N_STARTUP_LINE; n++) { |
| if (!(settings_read_startup_line(n, line))) { |
| line[0] = 0; |
| report_execute_startup_message(line,STATUS_SETTING_READ_FAIL); |
| } else { |
| if (line[0] != 0) { |
| uint8_t status_code = gc_execute_line(line); |
| report_execute_startup_message(line,status_code); |
| } |
| } |
| } |
| } |
| |
| |
| // Directs and executes one line of formatted input from protocol_process. While mostly |
| // incoming streaming g-code blocks, this also executes Grbl internal commands, such as |
| // settings, initiating the homing cycle, and toggling switch states. This differs from |
| // the realtime command module by being susceptible to when Grbl is ready to execute the |
| // next line during a cycle, so for switches like block delete, the switch only effects |
| // the lines that are processed afterward, not necessarily real-time during a cycle, |
| // since there are motions already stored in the buffer. However, this 'lag' should not |
| // be an issue, since these commands are not typically used during a cycle. |
| uint8_t system_execute_line(char *line) |
| { |
| uint8_t char_counter = 1; |
| uint8_t helper_var = 0; // Helper variable |
| float parameter, value; |
| switch( line[char_counter] ) { |
| case 0 : report_grbl_help(); break; |
| case 'J' : // Jogging |
| // Execute only if in IDLE or JOG states. |
| if (sys.state != STATE_IDLE && sys.state != STATE_JOG) { return(STATUS_IDLE_ERROR); } |
| if(line[2] != '=') { return(STATUS_INVALID_STATEMENT); } |
| return(gc_execute_line(line)); // NOTE: $J= is ignored inside g-code parser and used to detect jog motions. |
| break; |
| case '$': case 'G': case 'C': case 'X': |
| if ( line[2] != 0 ) { return(STATUS_INVALID_STATEMENT); } |
| switch( line[1] ) { |
| case '$' : // Prints Grbl settings |
| if ( sys.state & (STATE_CYCLE | STATE_HOLD) ) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print. |
| else { report_grbl_settings(); } |
| break; |
| case 'G' : // Prints gcode parser state |
| // TODO: Move this to realtime commands for GUIs to request this data during suspend-state. |
| report_gcode_modes(); |
| break; |
| case 'C' : // Set check g-code mode [IDLE/CHECK] |
| // Perform reset when toggling off. Check g-code mode should only work if Grbl |
| // is idle and ready, regardless of alarm locks. This is mainly to keep things |
| // simple and consistent. |
| if ( sys.state == STATE_CHECK_MODE ) { |
| mc_reset(); |
| report_feedback_message(MESSAGE_DISABLED); |
| } else { |
| if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode. |
| sys.state = STATE_CHECK_MODE; |
| report_feedback_message(MESSAGE_ENABLED); |
| } |
| break; |
| case 'X' : // Disable alarm lock [ALARM] |
| if (sys.state == STATE_ALARM) { |
| // Block if safety door is ajar. |
| if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); } |
| report_feedback_message(MESSAGE_ALARM_UNLOCK); |
| sys.state = STATE_IDLE; |
| // Don't run startup script. Prevents stored moves in startup from causing accidents. |
| } // Otherwise, no effect. |
| break; |
| } |
| break; |
| default : |
| // Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing) |
| if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); } |
| switch( line[1] ) { |
| case '#' : // Print Grbl NGC parameters |
| if ( line[2] != 0 ) { return(STATUS_INVALID_STATEMENT); } |
| else { report_ngc_parameters(); } |
| break; |
| case 'H' : // Perform homing cycle [IDLE/ALARM] |
| if (bit_isfalse(settings.flags,BITFLAG_HOMING_ENABLE)) {return(STATUS_SETTING_DISABLED); } |
| if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); } // Block if safety door is ajar. |
| sys.state = STATE_HOMING; // Set system state variable |
| if (line[2] == 0) { |
| mc_homing_cycle(HOMING_CYCLE_ALL); |
| #ifdef HOMING_SINGLE_AXIS_COMMANDS |
| } else if (line[3] == 0) { |
| switch (line[2]) { |
| case 'X': mc_homing_cycle(HOMING_CYCLE_X); break; |
| case 'Y': mc_homing_cycle(HOMING_CYCLE_Y); break; |
| case 'Z': mc_homing_cycle(HOMING_CYCLE_Z); break; |
| default: return(STATUS_INVALID_STATEMENT); |
| } |
| #endif |
| } else { return(STATUS_INVALID_STATEMENT); } |
| if (!sys.abort) { // Execute startup scripts after successful homing. |
| sys.state = STATE_IDLE; // Set to IDLE when complete. |
| st_go_idle(); // Set steppers to the settings idle state before returning. |
| if (line[2] == 0) { system_execute_startup(line); } |
| } |
| break; |
| case 'S' : // Puts Grbl to sleep [IDLE/ALARM] |
| if ((line[2] != 'L') || (line[3] != 'P') || (line[4] != 0)) { return(STATUS_INVALID_STATEMENT); } |
| system_set_exec_state_flag(EXEC_SLEEP); // Set to execute sleep mode immediately |
| break; |
| case 'I' : // Print or store build info. [IDLE/ALARM] |
| if ( line[++char_counter] == 0 ) { |
| settings_read_build_info(line); |
| report_build_info(line); |
| #ifdef ENABLE_BUILD_INFO_WRITE_COMMAND |
| } else { // Store startup line [IDLE/ALARM] |
| if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); } |
| helper_var = char_counter; // Set helper variable as counter to start of user info line. |
| do { |
| line[char_counter-helper_var] = line[char_counter]; |
| } while (line[char_counter++] != 0); |
| settings_store_build_info(line); |
| #endif |
| } |
| break; |
| case 'R' : // Restore defaults [IDLE/ALARM] |
| if ((line[2] != 'S') || (line[3] != 'T') || (line[4] != '=') || (line[6] != 0)) { return(STATUS_INVALID_STATEMENT); } |
| switch (line[5]) { |
| #ifdef ENABLE_RESTORE_EEPROM_DEFAULT_SETTINGS |
| case '$': settings_restore(SETTINGS_RESTORE_DEFAULTS); break; |
| #endif |
| #ifdef ENABLE_RESTORE_EEPROM_CLEAR_PARAMETERS |
| case '#': settings_restore(SETTINGS_RESTORE_PARAMETERS); break; |
| #endif |
| #ifdef ENABLE_RESTORE_EEPROM_WIPE_ALL |
| case '*': settings_restore(SETTINGS_RESTORE_ALL); break; |
| #endif |
| default: return(STATUS_INVALID_STATEMENT); |
| } |
| report_feedback_message(MESSAGE_RESTORE_DEFAULTS); |
| mc_reset(); // Force reset to ensure settings are initialized correctly. |
| break; |
| case 'N' : // Startup lines. [IDLE/ALARM] |
| if ( line[++char_counter] == 0 ) { // Print startup lines |
| for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) { |
| if (!(settings_read_startup_line(helper_var, line))) { |
| report_status_message(STATUS_SETTING_READ_FAIL); |
| } else { |
| report_startup_line(helper_var,line); |
| } |
| } |
| break; |
| } else { // Store startup line [IDLE Only] Prevents motion during ALARM. |
| if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle. |
| helper_var = true; // Set helper_var to flag storing method. |
| // No break. Continues into default: to read remaining command characters. |
| } |
| default : // Storing setting methods [IDLE/ALARM] |
| if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); } |
| if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); } |
| if (helper_var) { // Store startup line |
| // Prepare sending gcode block to gcode parser by shifting all characters |
| helper_var = char_counter; // Set helper variable as counter to start of gcode block |
| do { |
| line[char_counter-helper_var] = line[char_counter]; |
| } while (line[char_counter++] != 0); |
| // Execute gcode block to ensure block is valid. |
| helper_var = gc_execute_line(line); // Set helper_var to returned status code. |
| if (helper_var) { return(helper_var); } |
| else { |
| helper_var = trunc(parameter); // Set helper_var to int value of parameter |
| settings_store_startup_line(helper_var,line); |
| } |
| } else { // Store global setting. |
| if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); } |
| if((line[char_counter] != 0) || (parameter > 255)) { return(STATUS_INVALID_STATEMENT); } |
| return(settings_store_global_setting((uint8_t)parameter, value)); |
| } |
| } |
| } |
| return(STATUS_OK); // If '$' command makes it to here, then everything's ok. |
| } |
| |
| |
| |
| void system_flag_wco_change() |
| { |
| #ifdef FORCE_BUFFER_SYNC_DURING_WCO_CHANGE |
| protocol_buffer_synchronize(); |
| #endif |
| sys.report_wco_counter = 0; |
| } |
| |
| |
| // Returns machine position of axis 'idx'. Must be sent a 'step' array. |
| // NOTE: If motor steps and machine position are not in the same coordinate frame, this function |
| // serves as a central place to compute the transformation. |
| float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx) |
| { |
| float pos; |
| #ifdef COREXY |
| if (idx==X_AXIS) { |
| pos = (float)system_convert_corexy_to_x_axis_steps(steps) / settings.steps_per_mm[idx]; |
| } else if (idx==Y_AXIS) { |
| pos = (float)system_convert_corexy_to_y_axis_steps(steps) / settings.steps_per_mm[idx]; |
| } else { |
| pos = steps[idx]/settings.steps_per_mm[idx]; |
| } |
| #else |
| pos = steps[idx]/settings.steps_per_mm[idx]; |
| #endif |
| return(pos); |
| } |
| |
| |
| void system_convert_array_steps_to_mpos(float *position, int32_t *steps) |
| { |
| uint8_t idx; |
| for (idx=0; idx<N_AXIS; idx++) { |
| position[idx] = system_convert_axis_steps_to_mpos(steps, idx); |
| } |
| return; |
| } |
| |
| |
| // CoreXY calculation only. Returns x or y-axis "steps" based on CoreXY motor steps. |
| #ifdef COREXY |
| int32_t system_convert_corexy_to_x_axis_steps(int32_t *steps) |
| { |
| return( (steps[A_MOTOR] + steps[B_MOTOR])/2 ); |
| } |
| int32_t system_convert_corexy_to_y_axis_steps(int32_t *steps) |
| { |
| return( (steps[A_MOTOR] - steps[B_MOTOR])/2 ); |
| } |
| #endif |
| |
| |
| // Checks and reports if target array exceeds machine travel limits. |
| uint8_t system_check_travel_limits(float *target) |
| { |
| uint8_t idx; |
| for (idx=0; idx<N_AXIS; idx++) { |
| #ifdef HOMING_FORCE_SET_ORIGIN |
| // When homing forced set origin is enabled, soft limits checks need to account for directionality. |
| // NOTE: max_travel is stored as negative |
| if (bit_istrue(settings.homing_dir_mask,bit(idx))) { |
| if (target[idx] < 0 || target[idx] > -settings.max_travel[idx]) { return(true); } |
| } else { |
| if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return(true); } |
| } |
| #else |
| // NOTE: max_travel is stored as negative |
| if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return(true); } |
| #endif |
| } |
| return(false); |
| } |
| |
| |
| // Special handlers for setting and clearing Grbl's real-time execution flags. |
| void system_set_exec_state_flag(uint8_t mask) { |
| uint8_t sreg = SREG; |
| cli(); |
| sys_rt_exec_state |= (mask); |
| SREG = sreg; |
| } |
| |
| void system_clear_exec_state_flag(uint8_t mask) { |
| uint8_t sreg = SREG; |
| cli(); |
| sys_rt_exec_state &= ~(mask); |
| SREG = sreg; |
| } |
| |
| void system_set_exec_alarm(uint8_t code) { |
| uint8_t sreg = SREG; |
| cli(); |
| sys_rt_exec_alarm = code; |
| SREG = sreg; |
| } |
| |
| void system_clear_exec_alarm() { |
| uint8_t sreg = SREG; |
| cli(); |
| sys_rt_exec_alarm = 0; |
| SREG = sreg; |
| } |
| |
| void system_set_exec_motion_override_flag(uint8_t mask) { |
| uint8_t sreg = SREG; |
| cli(); |
| sys_rt_exec_motion_override |= (mask); |
| SREG = sreg; |
| } |
| |
| void system_set_exec_accessory_override_flag(uint8_t mask) { |
| uint8_t sreg = SREG; |
| cli(); |
| sys_rt_exec_accessory_override |= (mask); |
| SREG = sreg; |
| } |
| |
| void system_clear_exec_motion_overrides() { |
| uint8_t sreg = SREG; |
| cli(); |
| sys_rt_exec_motion_override = 0; |
| SREG = sreg; |
| } |
| |
| void system_clear_exec_accessory_overrides() { |
| uint8_t sreg = SREG; |
| cli(); |
| sys_rt_exec_accessory_override = 0; |
| SREG = sreg; |
| } |