Luigi Santivetti | 69972f9 | 2019-11-12 22:55:40 +0000 | [diff] [blame^] | 1 | /* |
| 2 | system.c - Handles system level commands and real-time processes |
| 3 | Part of Grbl |
| 4 | |
| 5 | Copyright (c) 2014-2016 Sungeun K. Jeon for Gnea Research LLC |
| 6 | |
| 7 | Grbl is free software: you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation, either version 3 of the License, or |
| 10 | (at your option) any later version. |
| 11 | |
| 12 | Grbl is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with Grbl. If not, see <http://www.gnu.org/licenses/>. |
| 19 | */ |
| 20 | |
| 21 | #include "grbl.h" |
| 22 | |
| 23 | |
| 24 | void system_init() |
| 25 | { |
| 26 | CONTROL_DDR &= ~(CONTROL_MASK); // Configure as input pins |
| 27 | #ifdef DISABLE_CONTROL_PIN_PULL_UP |
| 28 | CONTROL_PORT &= ~(CONTROL_MASK); // Normal low operation. Requires external pull-down. |
| 29 | #else |
| 30 | CONTROL_PORT |= CONTROL_MASK; // Enable internal pull-up resistors. Normal high operation. |
| 31 | #endif |
| 32 | CONTROL_PCMSK |= CONTROL_MASK; // Enable specific pins of the Pin Change Interrupt |
| 33 | PCICR |= (1 << CONTROL_INT); // Enable Pin Change Interrupt |
| 34 | } |
| 35 | |
| 36 | |
| 37 | // Returns control pin state as a uint8 bitfield. Each bit indicates the input pin state, where |
| 38 | // triggered is 1 and not triggered is 0. Invert mask is applied. Bitfield organization is |
| 39 | // defined by the CONTROL_PIN_INDEX in the header file. |
| 40 | uint8_t system_control_get_state() |
| 41 | { |
| 42 | uint8_t control_state = 0; |
| 43 | uint8_t pin = (CONTROL_PIN & CONTROL_MASK) ^ CONTROL_MASK; |
| 44 | #ifdef INVERT_CONTROL_PIN_MASK |
| 45 | pin ^= INVERT_CONTROL_PIN_MASK; |
| 46 | #endif |
| 47 | if (pin) { |
| 48 | #ifdef ENABLE_SAFETY_DOOR_INPUT_PIN |
| 49 | if (bit_istrue(pin,(1<<CONTROL_SAFETY_DOOR_BIT))) { control_state |= CONTROL_PIN_INDEX_SAFETY_DOOR; } |
| 50 | #else |
| 51 | if (bit_istrue(pin,(1<<CONTROL_FEED_HOLD_BIT))) { control_state |= CONTROL_PIN_INDEX_FEED_HOLD; } |
| 52 | #endif |
| 53 | if (bit_istrue(pin,(1<<CONTROL_RESET_BIT))) { control_state |= CONTROL_PIN_INDEX_RESET; } |
| 54 | if (bit_istrue(pin,(1<<CONTROL_CYCLE_START_BIT))) { control_state |= CONTROL_PIN_INDEX_CYCLE_START; } |
| 55 | } |
| 56 | return(control_state); |
| 57 | } |
| 58 | |
| 59 | |
| 60 | // Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets |
| 61 | // only the realtime command execute variable to have the main program execute these when |
| 62 | // its ready. This works exactly like the character-based realtime commands when picked off |
| 63 | // directly from the incoming serial data stream. |
| 64 | ISR(CONTROL_INT_vect) |
| 65 | { |
| 66 | uint8_t pin = system_control_get_state(); |
| 67 | if (pin) { |
| 68 | if (bit_istrue(pin,CONTROL_PIN_INDEX_RESET)) { |
| 69 | mc_reset(); |
| 70 | } |
| 71 | if (bit_istrue(pin,CONTROL_PIN_INDEX_CYCLE_START)) { |
| 72 | bit_true(sys_rt_exec_state, EXEC_CYCLE_START); |
| 73 | } |
| 74 | #ifndef ENABLE_SAFETY_DOOR_INPUT_PIN |
| 75 | if (bit_istrue(pin,CONTROL_PIN_INDEX_FEED_HOLD)) { |
| 76 | bit_true(sys_rt_exec_state, EXEC_FEED_HOLD); |
| 77 | #else |
| 78 | if (bit_istrue(pin,CONTROL_PIN_INDEX_SAFETY_DOOR)) { |
| 79 | bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR); |
| 80 | #endif |
| 81 | } |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | |
| 86 | // Returns if safety door is ajar(T) or closed(F), based on pin state. |
| 87 | uint8_t system_check_safety_door_ajar() |
| 88 | { |
| 89 | #ifdef ENABLE_SAFETY_DOOR_INPUT_PIN |
| 90 | return(system_control_get_state() & CONTROL_PIN_INDEX_SAFETY_DOOR); |
| 91 | #else |
| 92 | return(false); // Input pin not enabled, so just return that it's closed. |
| 93 | #endif |
| 94 | } |
| 95 | |
| 96 | |
| 97 | // Executes user startup script, if stored. |
| 98 | void system_execute_startup(char *line) |
| 99 | { |
| 100 | uint8_t n; |
| 101 | for (n=0; n < N_STARTUP_LINE; n++) { |
| 102 | if (!(settings_read_startup_line(n, line))) { |
| 103 | line[0] = 0; |
| 104 | report_execute_startup_message(line,STATUS_SETTING_READ_FAIL); |
| 105 | } else { |
| 106 | if (line[0] != 0) { |
| 107 | uint8_t status_code = gc_execute_line(line); |
| 108 | report_execute_startup_message(line,status_code); |
| 109 | } |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | |
| 115 | // Directs and executes one line of formatted input from protocol_process. While mostly |
| 116 | // incoming streaming g-code blocks, this also executes Grbl internal commands, such as |
| 117 | // settings, initiating the homing cycle, and toggling switch states. This differs from |
| 118 | // the realtime command module by being susceptible to when Grbl is ready to execute the |
| 119 | // next line during a cycle, so for switches like block delete, the switch only effects |
| 120 | // the lines that are processed afterward, not necessarily real-time during a cycle, |
| 121 | // since there are motions already stored in the buffer. However, this 'lag' should not |
| 122 | // be an issue, since these commands are not typically used during a cycle. |
| 123 | uint8_t system_execute_line(char *line) |
| 124 | { |
| 125 | uint8_t char_counter = 1; |
| 126 | uint8_t helper_var = 0; // Helper variable |
| 127 | float parameter, value; |
| 128 | switch( line[char_counter] ) { |
| 129 | case 0 : report_grbl_help(); break; |
| 130 | case 'J' : // Jogging |
| 131 | // Execute only if in IDLE or JOG states. |
| 132 | if (sys.state != STATE_IDLE && sys.state != STATE_JOG) { return(STATUS_IDLE_ERROR); } |
| 133 | if(line[2] != '=') { return(STATUS_INVALID_STATEMENT); } |
| 134 | return(gc_execute_line(line)); // NOTE: $J= is ignored inside g-code parser and used to detect jog motions. |
| 135 | break; |
| 136 | case '$': case 'G': case 'C': case 'X': |
| 137 | if ( line[2] != 0 ) { return(STATUS_INVALID_STATEMENT); } |
| 138 | switch( line[1] ) { |
| 139 | case '$' : // Prints Grbl settings |
| 140 | if ( sys.state & (STATE_CYCLE | STATE_HOLD) ) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print. |
| 141 | else { report_grbl_settings(); } |
| 142 | break; |
| 143 | case 'G' : // Prints gcode parser state |
| 144 | // TODO: Move this to realtime commands for GUIs to request this data during suspend-state. |
| 145 | report_gcode_modes(); |
| 146 | break; |
| 147 | case 'C' : // Set check g-code mode [IDLE/CHECK] |
| 148 | // Perform reset when toggling off. Check g-code mode should only work if Grbl |
| 149 | // is idle and ready, regardless of alarm locks. This is mainly to keep things |
| 150 | // simple and consistent. |
| 151 | if ( sys.state == STATE_CHECK_MODE ) { |
| 152 | mc_reset(); |
| 153 | report_feedback_message(MESSAGE_DISABLED); |
| 154 | } else { |
| 155 | if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode. |
| 156 | sys.state = STATE_CHECK_MODE; |
| 157 | report_feedback_message(MESSAGE_ENABLED); |
| 158 | } |
| 159 | break; |
| 160 | case 'X' : // Disable alarm lock [ALARM] |
| 161 | if (sys.state == STATE_ALARM) { |
| 162 | // Block if safety door is ajar. |
| 163 | if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); } |
| 164 | report_feedback_message(MESSAGE_ALARM_UNLOCK); |
| 165 | sys.state = STATE_IDLE; |
| 166 | // Don't run startup script. Prevents stored moves in startup from causing accidents. |
| 167 | } // Otherwise, no effect. |
| 168 | break; |
| 169 | } |
| 170 | break; |
| 171 | default : |
| 172 | // Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing) |
| 173 | if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); } |
| 174 | switch( line[1] ) { |
| 175 | case '#' : // Print Grbl NGC parameters |
| 176 | if ( line[2] != 0 ) { return(STATUS_INVALID_STATEMENT); } |
| 177 | else { report_ngc_parameters(); } |
| 178 | break; |
| 179 | case 'H' : // Perform homing cycle [IDLE/ALARM] |
| 180 | if (bit_isfalse(settings.flags,BITFLAG_HOMING_ENABLE)) {return(STATUS_SETTING_DISABLED); } |
| 181 | if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); } // Block if safety door is ajar. |
| 182 | sys.state = STATE_HOMING; // Set system state variable |
| 183 | if (line[2] == 0) { |
| 184 | mc_homing_cycle(HOMING_CYCLE_ALL); |
| 185 | #ifdef HOMING_SINGLE_AXIS_COMMANDS |
| 186 | } else if (line[3] == 0) { |
| 187 | switch (line[2]) { |
| 188 | case 'X': mc_homing_cycle(HOMING_CYCLE_X); break; |
| 189 | case 'Y': mc_homing_cycle(HOMING_CYCLE_Y); break; |
| 190 | case 'Z': mc_homing_cycle(HOMING_CYCLE_Z); break; |
| 191 | default: return(STATUS_INVALID_STATEMENT); |
| 192 | } |
| 193 | #endif |
| 194 | } else { return(STATUS_INVALID_STATEMENT); } |
| 195 | if (!sys.abort) { // Execute startup scripts after successful homing. |
| 196 | sys.state = STATE_IDLE; // Set to IDLE when complete. |
| 197 | st_go_idle(); // Set steppers to the settings idle state before returning. |
| 198 | if (line[2] == 0) { system_execute_startup(line); } |
| 199 | } |
| 200 | break; |
| 201 | case 'S' : // Puts Grbl to sleep [IDLE/ALARM] |
| 202 | if ((line[2] != 'L') || (line[3] != 'P') || (line[4] != 0)) { return(STATUS_INVALID_STATEMENT); } |
| 203 | system_set_exec_state_flag(EXEC_SLEEP); // Set to execute sleep mode immediately |
| 204 | break; |
| 205 | case 'I' : // Print or store build info. [IDLE/ALARM] |
| 206 | if ( line[++char_counter] == 0 ) { |
| 207 | settings_read_build_info(line); |
| 208 | report_build_info(line); |
| 209 | #ifdef ENABLE_BUILD_INFO_WRITE_COMMAND |
| 210 | } else { // Store startup line [IDLE/ALARM] |
| 211 | if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); } |
| 212 | helper_var = char_counter; // Set helper variable as counter to start of user info line. |
| 213 | do { |
| 214 | line[char_counter-helper_var] = line[char_counter]; |
| 215 | } while (line[char_counter++] != 0); |
| 216 | settings_store_build_info(line); |
| 217 | #endif |
| 218 | } |
| 219 | break; |
| 220 | case 'R' : // Restore defaults [IDLE/ALARM] |
| 221 | if ((line[2] != 'S') || (line[3] != 'T') || (line[4] != '=') || (line[6] != 0)) { return(STATUS_INVALID_STATEMENT); } |
| 222 | switch (line[5]) { |
| 223 | #ifdef ENABLE_RESTORE_EEPROM_DEFAULT_SETTINGS |
| 224 | case '$': settings_restore(SETTINGS_RESTORE_DEFAULTS); break; |
| 225 | #endif |
| 226 | #ifdef ENABLE_RESTORE_EEPROM_CLEAR_PARAMETERS |
| 227 | case '#': settings_restore(SETTINGS_RESTORE_PARAMETERS); break; |
| 228 | #endif |
| 229 | #ifdef ENABLE_RESTORE_EEPROM_WIPE_ALL |
| 230 | case '*': settings_restore(SETTINGS_RESTORE_ALL); break; |
| 231 | #endif |
| 232 | default: return(STATUS_INVALID_STATEMENT); |
| 233 | } |
| 234 | report_feedback_message(MESSAGE_RESTORE_DEFAULTS); |
| 235 | mc_reset(); // Force reset to ensure settings are initialized correctly. |
| 236 | break; |
| 237 | case 'N' : // Startup lines. [IDLE/ALARM] |
| 238 | if ( line[++char_counter] == 0 ) { // Print startup lines |
| 239 | for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) { |
| 240 | if (!(settings_read_startup_line(helper_var, line))) { |
| 241 | report_status_message(STATUS_SETTING_READ_FAIL); |
| 242 | } else { |
| 243 | report_startup_line(helper_var,line); |
| 244 | } |
| 245 | } |
| 246 | break; |
| 247 | } else { // Store startup line [IDLE Only] Prevents motion during ALARM. |
| 248 | if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle. |
| 249 | helper_var = true; // Set helper_var to flag storing method. |
| 250 | // No break. Continues into default: to read remaining command characters. |
| 251 | } |
| 252 | default : // Storing setting methods [IDLE/ALARM] |
| 253 | if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); } |
| 254 | if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); } |
| 255 | if (helper_var) { // Store startup line |
| 256 | // Prepare sending gcode block to gcode parser by shifting all characters |
| 257 | helper_var = char_counter; // Set helper variable as counter to start of gcode block |
| 258 | do { |
| 259 | line[char_counter-helper_var] = line[char_counter]; |
| 260 | } while (line[char_counter++] != 0); |
| 261 | // Execute gcode block to ensure block is valid. |
| 262 | helper_var = gc_execute_line(line); // Set helper_var to returned status code. |
| 263 | if (helper_var) { return(helper_var); } |
| 264 | else { |
| 265 | helper_var = trunc(parameter); // Set helper_var to int value of parameter |
| 266 | settings_store_startup_line(helper_var,line); |
| 267 | } |
| 268 | } else { // Store global setting. |
| 269 | if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); } |
| 270 | if((line[char_counter] != 0) || (parameter > 255)) { return(STATUS_INVALID_STATEMENT); } |
| 271 | return(settings_store_global_setting((uint8_t)parameter, value)); |
| 272 | } |
| 273 | } |
| 274 | } |
| 275 | return(STATUS_OK); // If '$' command makes it to here, then everything's ok. |
| 276 | } |
| 277 | |
| 278 | |
| 279 | |
| 280 | void system_flag_wco_change() |
| 281 | { |
| 282 | #ifdef FORCE_BUFFER_SYNC_DURING_WCO_CHANGE |
| 283 | protocol_buffer_synchronize(); |
| 284 | #endif |
| 285 | sys.report_wco_counter = 0; |
| 286 | } |
| 287 | |
| 288 | |
| 289 | // Returns machine position of axis 'idx'. Must be sent a 'step' array. |
| 290 | // NOTE: If motor steps and machine position are not in the same coordinate frame, this function |
| 291 | // serves as a central place to compute the transformation. |
| 292 | float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx) |
| 293 | { |
| 294 | float pos; |
| 295 | #ifdef COREXY |
| 296 | if (idx==X_AXIS) { |
| 297 | pos = (float)system_convert_corexy_to_x_axis_steps(steps) / settings.steps_per_mm[idx]; |
| 298 | } else if (idx==Y_AXIS) { |
| 299 | pos = (float)system_convert_corexy_to_y_axis_steps(steps) / settings.steps_per_mm[idx]; |
| 300 | } else { |
| 301 | pos = steps[idx]/settings.steps_per_mm[idx]; |
| 302 | } |
| 303 | #else |
| 304 | pos = steps[idx]/settings.steps_per_mm[idx]; |
| 305 | #endif |
| 306 | return(pos); |
| 307 | } |
| 308 | |
| 309 | |
| 310 | void system_convert_array_steps_to_mpos(float *position, int32_t *steps) |
| 311 | { |
| 312 | uint8_t idx; |
| 313 | for (idx=0; idx<N_AXIS; idx++) { |
| 314 | position[idx] = system_convert_axis_steps_to_mpos(steps, idx); |
| 315 | } |
| 316 | return; |
| 317 | } |
| 318 | |
| 319 | |
| 320 | // CoreXY calculation only. Returns x or y-axis "steps" based on CoreXY motor steps. |
| 321 | #ifdef COREXY |
| 322 | int32_t system_convert_corexy_to_x_axis_steps(int32_t *steps) |
| 323 | { |
| 324 | return( (steps[A_MOTOR] + steps[B_MOTOR])/2 ); |
| 325 | } |
| 326 | int32_t system_convert_corexy_to_y_axis_steps(int32_t *steps) |
| 327 | { |
| 328 | return( (steps[A_MOTOR] - steps[B_MOTOR])/2 ); |
| 329 | } |
| 330 | #endif |
| 331 | |
| 332 | |
| 333 | // Checks and reports if target array exceeds machine travel limits. |
| 334 | uint8_t system_check_travel_limits(float *target) |
| 335 | { |
| 336 | uint8_t idx; |
| 337 | for (idx=0; idx<N_AXIS; idx++) { |
| 338 | #ifdef HOMING_FORCE_SET_ORIGIN |
| 339 | // When homing forced set origin is enabled, soft limits checks need to account for directionality. |
| 340 | // NOTE: max_travel is stored as negative |
| 341 | if (bit_istrue(settings.homing_dir_mask,bit(idx))) { |
| 342 | if (target[idx] < 0 || target[idx] > -settings.max_travel[idx]) { return(true); } |
| 343 | } else { |
| 344 | if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return(true); } |
| 345 | } |
| 346 | #else |
| 347 | // NOTE: max_travel is stored as negative |
| 348 | if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return(true); } |
| 349 | #endif |
| 350 | } |
| 351 | return(false); |
| 352 | } |
| 353 | |
| 354 | |
| 355 | // Special handlers for setting and clearing Grbl's real-time execution flags. |
| 356 | void system_set_exec_state_flag(uint8_t mask) { |
| 357 | uint8_t sreg = SREG; |
| 358 | cli(); |
| 359 | sys_rt_exec_state |= (mask); |
| 360 | SREG = sreg; |
| 361 | } |
| 362 | |
| 363 | void system_clear_exec_state_flag(uint8_t mask) { |
| 364 | uint8_t sreg = SREG; |
| 365 | cli(); |
| 366 | sys_rt_exec_state &= ~(mask); |
| 367 | SREG = sreg; |
| 368 | } |
| 369 | |
| 370 | void system_set_exec_alarm(uint8_t code) { |
| 371 | uint8_t sreg = SREG; |
| 372 | cli(); |
| 373 | sys_rt_exec_alarm = code; |
| 374 | SREG = sreg; |
| 375 | } |
| 376 | |
| 377 | void system_clear_exec_alarm() { |
| 378 | uint8_t sreg = SREG; |
| 379 | cli(); |
| 380 | sys_rt_exec_alarm = 0; |
| 381 | SREG = sreg; |
| 382 | } |
| 383 | |
| 384 | void system_set_exec_motion_override_flag(uint8_t mask) { |
| 385 | uint8_t sreg = SREG; |
| 386 | cli(); |
| 387 | sys_rt_exec_motion_override |= (mask); |
| 388 | SREG = sreg; |
| 389 | } |
| 390 | |
| 391 | void system_set_exec_accessory_override_flag(uint8_t mask) { |
| 392 | uint8_t sreg = SREG; |
| 393 | cli(); |
| 394 | sys_rt_exec_accessory_override |= (mask); |
| 395 | SREG = sreg; |
| 396 | } |
| 397 | |
| 398 | void system_clear_exec_motion_overrides() { |
| 399 | uint8_t sreg = SREG; |
| 400 | cli(); |
| 401 | sys_rt_exec_motion_override = 0; |
| 402 | SREG = sreg; |
| 403 | } |
| 404 | |
| 405 | void system_clear_exec_accessory_overrides() { |
| 406 | uint8_t sreg = SREG; |
| 407 | cli(); |
| 408 | sys_rt_exec_accessory_override = 0; |
| 409 | SREG = sreg; |
| 410 | } |